Genome-wide identification and characterization of ABA receptorPYLgene family in rice

被引:73
|
作者
Yadav, Shashank Kumar [1 ,2 ]
Santosh Kumar, Vinjamuri Venkata [1 ]
Verma, Rakesh Kumar [1 ]
Yadav, Pragya [1 ]
Saroha, Ankit [3 ]
Wankhede, Dhammaprakash Pandhari [3 ]
Chaudhary, Bhupendra [2 ]
Chinnusamy, Viswanathan [1 ]
机构
[1] Indian Agr Res Inst, ICAR, Div Plant Physiol, Pusa Campus, New Delhi 110012, India
[2] Gautam Buddha Univ, Sch Biotechnol, Greater Noida 201310, UP, India
[3] Natl Bur Plant Genet Resources, ICAR, Pusa Campus, New Delhi 110012, India
关键词
ABA receptors (ABARs); Abiotic stresses; Collinearity; miRNAs; Single amino acid polymorphism (SAP); Single nucleotide polymorphism (SNP); Stress responsivecis-elements; Synteny; ABSCISIC-ACID RECEPTORS; SIGNAL-TRANSDUCTION; GENE-EXPRESSION; DROUGHT STRESS; COMBINATORIAL INTERACTION; INTERACTION NETWORK; SEED-GERMINATION; MOLECULAR-BASIS; PROTEIN; TRANSCRIPTION;
D O I
10.1186/s12864-020-07083-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Abscisic acid (ABA), a key phytohormone that controls plant growth and stress responses, is sensed by the pyrabactin resistance 1(PYR1)/PYR1-like (PYL)/regulatory components of the ABA receptor (RCAR) family of proteins. Comprehensive information on evolution and function ofPYLgene family in rice (Oryza sativa) needs further investigation. This study made detailed analysis on evolutionary relationship between PYL family members, collinearity, synteny, gene structure, protein motifs,cis-regulatory elements (CREs), SNP variations, miRNAs targetingPYLsand expression profiles in different tissues and stress responses. Results Based on sequence homology withArabidopsisPYL proteins, we identified a total of 13 PYLs in rice (BOP clade) and maize (PACCMAD clade), while other members of BOP (wheat - each diploid genome, barley andBrachypodium) and PACCMAD (sorghum and foxtail millet) have 8-9 PYLs. The phylogenetic analysis divided PYLs into three subfamilies that are structurally and functionally conserved across species. Gene structure and motif analysis ofOsPYLs revealed that members of each subfamily have similar gene and motif structure. Segmental duplication appears be the driving force for the expansion ofPYLs, and the majority of thePYLsunderwent evolution under purifying selection in rice. 32 unique potential miRNAs that might targetPYLswere identified in rice. Thus, the predicted regulation ofPYLsthrough miRNAs in rice is more elaborate as compared withB. napus. Further, the miRNAs identified to in this study were also regulated by stresses, which adds additional layer of regulation ofPYLs. The frequency of SAPs identified was higher inindicacultivars and were predominantly located in START domain that participate in ABA binding. The promoters of most of theOsPYLs havecis-regulatory elements involved in imparting abiotic stress responsive expression. In silico and q-RT-PCR expression analyses ofPYLgenes revealed multifaceted role of ABARs in shaping plant development as well as abiotic stress responses. Conclusion The predicted miRNA mediated regulation ofOsPYLsand stress regulated expression of allOsPYLs, at least, under one stress, lays foundation for further validation and fine tuning ABA receptors for stress tolerance without yield penalty in rice.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Genome-Wide Identification and Characterization of the Pirin Gene Family in Nicotiana benthamiana
    Xu, Gecheng
    Shi, Jingjing
    Qiao, Jiliang
    Liao, Pingan
    Yong, Bin
    Zhong, Kaili
    GENES, 2025, 16 (02)
  • [32] Genome-wide identification and characterization of WRKY gene family in Hevea brasiliensis
    Li, Hui-Liang
    Guo, Dong
    Yang, Zi-Ping
    Tang, Xiao
    Peng, Shi-Qing
    GENOMICS, 2014, 104 (01) : 14 - 23
  • [33] Genome-wide identification and characterization of WRKY gene family in Salix suchowensis
    Bi, Changwei
    Xu, Yiqing
    Ye, Qiaolin
    Yin, Tongming
    Ye, Ning
    PEERJ, 2016, 4
  • [34] Genome-wide identification and characterization of the RIO atypical kinase family in plants
    Qingsong Gao
    Shuhui Xu
    Xiayuan Zhu
    Lingling Wang
    Zefeng Yang
    Xiangxiang Zhao
    Genes & Genomics, 2018, 40 : 669 - 683
  • [35] Genome-wide identification, characterization and expression analysis of the ABA receptor PYL gene family in response to ABA, photoperiod, and chilling in vegetative buds of Liriodendron chinense
    Hussain, Quaid
    Zheng, Manjia
    Ashraf, Muhammad Furqan
    Khan, Rayyan
    Yasir, Muhammad
    Farooq, Saqib
    Zhang, Rui
    Wu, Jiasheng
    SCIENTIA HORTICULTURAE, 2022, 303
  • [36] GENOME-WIDE IDENTIFICATION AND CHARACTERIZATION OF THE SBP GENE FAMILY IN EUCALYPTUS GRANDIS
    Buyuk, I
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2018, 16 (05): : 6181 - 6193
  • [37] Genome-wide identification and characterization of laccase gene family in Citrus sinensis
    Xu, Xiaoyong
    Zhou, Yipeng
    Wang, Bin
    Ding, Li
    Wang, Yue
    Luo, Li
    Zhang, Yueliang
    Kong, Weiwen
    GENE, 2019, 689 : 114 - 123
  • [38] Genome-wide identification, systematic analysis and characterization of SRO family genes in maize (Zea mays L.)
    Jiang, Huanhuan
    Xiao, Yao
    Zhu, Suwen
    ACTA PHYSIOLOGIAE PLANTARUM, 2018, 40 (10)
  • [39] Genome-wide identification of ABA receptor PYL/RCAR gene family and their response to cold stress in Medicago sativa L
    Nian, Lili
    Zhang, Xiaoning
    Yi, Xianfeng
    Liu, Xuelu
    ul Ain, Noor
    Yang, Yingbo
    Li, Xiaodan
    Haider, Fasih Ullah
    Zhu, Xiaolin
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2021, 27 (09) : 1979 - 1995
  • [40] Genome-Wide Identification and Gene Expression Analysis of ABA Receptor Family Genes in Brassica juncea var. tumida
    Cheng, Chunhong
    Zhong, Yuanmei
    Cai, Zhaoming
    Su, Rongbin
    Li, Changman
    GENES, 2019, 10 (06)