Feature selection using binary particle swarm optimization and support vector machines for medical diagnosis

被引:26
|
作者
Daliri, Mohammad Reza [1 ]
机构
[1] Iran Univ Sci & Technol, Fac Elect Engn, Dept Biomed Engn, Tehran 1684613114, Iran
来源
BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK | 2012年 / 57卷 / 05期
关键词
binary particle swarm optimization; feature selection; medical diagnosis; support vector machines; GENETIC ALGORITHMS; NEURAL-NETWORKS; CLASSIFICATION; SYSTEM;
D O I
10.1515/bmt-2012-0009
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this article, we propose a feature selection strategy using a binary particle swarm optimization algorithm for the diagnosis of different medical diseases. The support vector machines were used for the fitness function of the binary particle swarm optimization. We evaluated our proposed method on four databases from the machine learning repository, including the single proton emission computed tomography heart database, the Wisconsin breast cancer data set, the Pima Indians diabetes database, and the Dermatology data set. The results indicate that, with selected less number of features, we obtained a higher accuracy in diagnosing heart, cancer, diabetes, and erythematosquamous diseases. The results were compared with the traditional feature selection methods, namely, the F-score and the information gain, and a superior accuracy was obtained with out method. Compared to the genetic algorithm for feature selection, the results of the proposed method show a higher accuracy in all of the data, except in one. In addition, in comparison with other methods that used the same data, our approach has a higher performance using less number of features.
引用
收藏
页码:395 / 402
页数:8
相关论文
共 50 条
  • [41] Particle Swarm Optimization Feature Selection for Breast Cancer Recurrence Prediction
    Sakri, Sapiah Binti
    Rashid, Nuraini Binti Abdul
    Zain, Zuhaira Muhammad
    IEEE ACCESS, 2018, 6 : 29637 - 29647
  • [42] Intelligent breast cancer recognition using particle swarm optimization and support vector machines
    Ahmadi, Abbas
    Afshar, Parnian
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2016, 28 (06) : 1021 - 1034
  • [43] Feature Selection using Fuzzy Support Vector Machines
    Hong Xia
    Bao Qing Hu
    Fuzzy Optimization and Decision Making, 2006, 5 (2) : 187 - 192
  • [44] Cost-sensitive Feature Selection for Support Vector Machines
    Benitez-Pena, S.
    Blanquero, R.
    Carrizosa, E.
    Ramirez-Cobo, P.
    COMPUTERS & OPERATIONS RESEARCH, 2019, 106 : 169 - 178
  • [45] Feature Selection and Parameter Optimization of Support Vector Machines Based on Modified Artificial Fish Swarm Algorithms
    Lin, Kuan-Cheng
    Chen, Sih-Yang
    Hung, Jason C.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [46] Feature Selection Algorithm Based on Least Squares Support Vector Machine and Particle Swarm Optimization
    Song Chuyi
    Jiang Jingqing
    Wu Chunguo
    Liang Yanchun
    ADVANCES IN SWARM INTELLIGENCE, PT II, 2011, 6729 : 275 - +
  • [47] Stable Feature Selection for Gene Expression using Enhanced Binary Particle Swarm Optimization
    Dhrif, Hassen
    Wuchty, Stefan
    ICAART: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2, 2020, : 437 - 444
  • [48] Feature Selection using Dynamic Binary Particle Swarm Optimization for Enhanced Iris Recognition
    Rao, Nishatith P. R.
    Hebbar, Mai
    Manikantan, K.
    2016 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2016, : 139 - 146
  • [49] missForest with feature selection using binary particle swarm optimization improves the imputation accuracy of continuous data
    Heejin Jin
    Surin Jung
    Sungho Won
    Genes & Genomics, 2022, 44 : 651 - 658
  • [50] Combining heterogeneous features for face detection using multiscale feature selection with binary particle swarm optimization
    Pan, Hong
    Xia, Si-Yu
    Jin, Li-Zuo
    Xia, Liang-Zheng
    MIPPR 2011: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2011, 8006