Feature selection using binary particle swarm optimization and support vector machines for medical diagnosis

被引:26
|
作者
Daliri, Mohammad Reza [1 ]
机构
[1] Iran Univ Sci & Technol, Fac Elect Engn, Dept Biomed Engn, Tehran 1684613114, Iran
来源
BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK | 2012年 / 57卷 / 05期
关键词
binary particle swarm optimization; feature selection; medical diagnosis; support vector machines; GENETIC ALGORITHMS; NEURAL-NETWORKS; CLASSIFICATION; SYSTEM;
D O I
10.1515/bmt-2012-0009
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this article, we propose a feature selection strategy using a binary particle swarm optimization algorithm for the diagnosis of different medical diseases. The support vector machines were used for the fitness function of the binary particle swarm optimization. We evaluated our proposed method on four databases from the machine learning repository, including the single proton emission computed tomography heart database, the Wisconsin breast cancer data set, the Pima Indians diabetes database, and the Dermatology data set. The results indicate that, with selected less number of features, we obtained a higher accuracy in diagnosing heart, cancer, diabetes, and erythematosquamous diseases. The results were compared with the traditional feature selection methods, namely, the F-score and the information gain, and a superior accuracy was obtained with out method. Compared to the genetic algorithm for feature selection, the results of the proposed method show a higher accuracy in all of the data, except in one. In addition, in comparison with other methods that used the same data, our approach has a higher performance using less number of features.
引用
收藏
页码:395 / 402
页数:8
相关论文
共 50 条
  • [21] Tabu Search and Binary Particle Swarm Optimization for Feature Selection Using Microarray Data
    Chuang, Li-Yeh
    Yang, Cheng-Huei
    Yang, Cheng-Hong
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2009, 16 (12) : 1689 - 1703
  • [22] A GA-based feature selection and parameters optimization for support vector machines
    Huang, Cheng-Lung
    Wang, Chieh-Jen
    EXPERT SYSTEMS WITH APPLICATIONS, 2006, 31 (02) : 231 - 240
  • [23] Feature Selection Using EEG Signals: A Novel Hybrid Binary Particle Swarm Optimization
    Nemati, Mohammad
    Taheri, Alireza
    Ghazizadeh, Ali
    Dehkordi, Milad Banitalebi
    Meghdari, Ali
    2022 10TH RSI INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM), 2022, : 359 - 364
  • [24] A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine
    Babaoglu, Ismail
    Findik, Oguz
    Ulker, Erkan
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (04) : 3177 - 3183
  • [25] Feature Selection for Classification Using Particle Swarm Optimization
    Brezocnik, Lucija
    17TH IEEE INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES - IEEE EUROCON 2017 CONFERENCE PROCEEDINGS, 2017, : 966 - 971
  • [26] Binary Particle Swarm Optimization for Feature Selection on Uterine Electrohysterogram Signal
    Alamedine, Dima
    Marque, Catherine
    Alamedine, Dima
    Khalil, Mohamad
    2013 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ABME 2013), 2013, : 125 - 128
  • [27] Chaotic maps based on binary particle swarm optimization for feature selection
    Chuang, Li-Yeh
    Yang, Cheng-Hong
    Li, Jung-Chike
    APPLIED SOFT COMPUTING, 2011, 11 (01) : 239 - 248
  • [28] Multi-surrogate assisted binary particle swarm optimization algorithm and its application for feature selection
    Hu, Pei
    Pan, Jeng-Shyang
    Chu, Shu-Chuan
    Sun, Chaoli
    APPLIED SOFT COMPUTING, 2022, 121
  • [29] The application of particle swarm optimization in training support vector machines
    Chen, Zhiguo
    Shan, Yan
    DCABES 2006 PROCEEDINGS, VOLS 1 AND 2, 2006, : 715 - 718
  • [30] Improved binary particle swarm optimization using catfish effect for feature selection
    Chuang, Li-Yeh
    Tsai, Sheng-Wei
    Yang, Cheng-Hong
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (10) : 12699 - 12707