Sharp threshold of global existence and blow-up of the combined nonlinear Klein-Gordon equation

被引:4
|
作者
Lu, Jing [1 ]
Miao, Qianyun [2 ]
机构
[1] China Agr Univ, Coll Sci, Beijing 100193, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Blow up; Combined nonlinear Klein-Gordon equation; Threshold energy; DEFINED SCATTERING OPERATORS; ENERGY SCATTERING;
D O I
10.1016/j.jmaa.2019.01.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show the global well-posedness and blow-up result of the solutions with the energy below the threshold for the combined nonlinear Klein-Gordon equation u(tt) - Delta u + u = vertical bar u vertical bar(p-1)u - vertical bar u vertical bar(q-1)u, d >= 3, in the energy space H-1(R-d) x L-2 (R-d), where 1 + 4/d < q < p <= 1 + 4/d-2. We give a threshold of blow up and global well-posedness using a modified variational approach, in the spirit of Ibrahim et al. (2011) [7). (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:814 / 832
页数:19
相关论文
共 50 条