Exact solitary wave solutions for a discrete λφ4 field theory in 1+1 dimensions -: art. no. 036605

被引:36
作者
Cooper, F [1 ]
Khare, A
Mihaila, B
Saxena, A
机构
[1] Natl Sci Fdn, Div Phys, Arlington, VA 22230 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
[4] Inst Phys, Bhubaneswar 751005, Orissa, India
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 03期
关键词
D O I
10.1103/PhysRevE.72.036605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We have found exact, periodic, time-dependent solitary wave solutions of a discrete phi(4) field theory model. For finite lattices, depending on whether one is considering a repulsive or attractive case, the solutions are Jacobi elliptic functions, either sn(x,m) [which reduce to the kink function tanh(x) for m -> 1], or they are dn(x,m) and cn(x,m) [which reduce to the pulse function sech(x) for m -> 1]. We have studied the stability of these solutions numerically, and we find that our solutions are linearly stable in most cases. We show that this model is a Hamiltonian system, and that the effective Peierls-Nabarro barrier due to discreteness is zero not only for the two localized modes but even for all three periodic solutions. We also present results of numerical simulations of scattering of kink-antikink and pulse-antipulse solitary wave solutions.
引用
收藏
页数:11
相关论文
共 41 条
[11]  
Byrd P. F, 1971, Handbook of Elliptic Integrals for Engineers and Scientists
[12]  
CAI SD, 1994, THEISS NW U EVANSTON, P37401
[13]  
Das A., 1989, INTEGRABLE MODELS
[14]   ENERGY LOCALIZATION IN NONLINEAR LATTICES [J].
DAUXOIS, T ;
PEYRARD, M .
PHYSICAL REVIEW LETTERS, 1993, 70 (25) :3935-3938
[15]   Discrete spatial optical solitons in waveguide arrays [J].
Eisenberg, HS ;
Silberberg, Y ;
Morandotti, R ;
Boyd, AR ;
Aitchison, JS .
PHYSICAL REVIEW LETTERS, 1998, 81 (16) :3383-3386
[16]   THE FERMI-PASTA-ULAM PROBLEM - PARADOX TURNS DISCOVERY [J].
FORD, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 213 (05) :271-310
[17]  
Frenkel J, 1939, J PHYS-USSR, V1, P137
[18]   SOLITON PROPAGATION IN MATERIALS WITH SATURABLE NONLINEARITY [J].
GATZ, S ;
HERRMANN, J .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (11) :2296-2302
[19]   SOLITON PROPAGATION AND SOLITON COLLISION IN DOUBLE-DOPED FIBERS WITH A NON-KERR-LIKE NONLINEAR REFRACTIVE-INDEX CHANGE [J].
GATZ, S ;
HERRMANN, J .
OPTICS LETTERS, 1992, 17 (07) :484-486