Exact solitary wave solutions for a discrete λφ4 field theory in 1+1 dimensions -: art. no. 036605

被引:36
作者
Cooper, F [1 ]
Khare, A
Mihaila, B
Saxena, A
机构
[1] Natl Sci Fdn, Div Phys, Arlington, VA 22230 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
[4] Inst Phys, Bhubaneswar 751005, Orissa, India
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 03期
关键词
D O I
10.1103/PhysRevE.72.036605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We have found exact, periodic, time-dependent solitary wave solutions of a discrete phi(4) field theory model. For finite lattices, depending on whether one is considering a repulsive or attractive case, the solutions are Jacobi elliptic functions, either sn(x,m) [which reduce to the kink function tanh(x) for m -> 1], or they are dn(x,m) and cn(x,m) [which reduce to the pulse function sech(x) for m -> 1]. We have studied the stability of these solutions numerically, and we find that our solutions are linearly stable in most cases. We show that this model is a Hamiltonian system, and that the effective Peierls-Nabarro barrier due to discreteness is zero not only for the two localized modes but even for all three periodic solutions. We also present results of numerical simulations of scattering of kink-antikink and pulse-antipulse solitary wave solutions.
引用
收藏
页数:11
相关论文
共 41 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :598-603
[3]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[4]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[5]   HAMILTONIAN STRUCTURES OF THE MULTI-BOSON KP HIERARCHIES, ABELIANIZATION AND LATTICE FORMULATION [J].
ARATYN, H ;
NISSIMOV, E ;
PACHEVA, S .
PHYSICS LETTERS B, 1994, 331 (1-2) :82-92
[6]   MOTION OF A FRENKEL-KONTOROWA DISLOCATION IN A 1-DIMENSIONAL CRYSTAL [J].
ATKINSON, W ;
CABRERA, N .
PHYSICAL REVIEW, 1965, 138 (3A) :A763-&
[7]   UNIFIED APPROACH TO INTERPRETATION OF DISPLACIVE AND ORDER-DISORDER SYSTEMS .2. DISPLACIVE SYSTEMS [J].
AUBRY, S .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (08) :3392-3402
[8]   The Fermi-Pasta-Ulam problem: Fifty years of progress [J].
Berman, GP ;
Izrailev, FM .
CHAOS, 2005, 15 (01)
[9]   Relativistic hydrodynamic scaling from the dynamics of quantum field theory [J].
Bettencourt, LMA ;
Cooper, F ;
Pao, K .
PHYSICAL REVIEW LETTERS, 2002, 89 (11)
[10]   NONLINEAR DYNAMICS OF THE FRENKEL-KONTOROVA MODEL WITH IMPURITIES [J].
BRAUN, OM ;
KIVSHAR, YS .
PHYSICAL REVIEW B, 1991, 43 (01) :1060-1073