OPTIMAL SEQUENTIAL DETECTION IN MULTI-STREAM DATA

被引:33
作者
Chan, Hock Peng [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, 6 Sci Dr 2, Singapore 117546, Singapore
关键词
Average run length; CUSUM; detectability score; detection delay; mixture likelihood ratio; sparse detection; stopping rule;
D O I
10.1214/17-AOS1546
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a large number of detectors each generating a data stream. The task is to detect online, distribution changes in a small fraction of the data streams. Previous approaches to this problem include the use of mixture likelihood ratios and sum of CUSUMs. We provide here extensions and modifications of these approaches that are optimal in detecting normal mean shifts. We show how the optimal) detection delay depends on the fraction of data streams undergoing distribution changes as the number of detectors goes to infinity. There are three detection domains. In the first domain for moderately large fractions, immediate detection is possible. In the second domain for smaller fractions, the detection delay grows logarithmically with the number of detectors, with an asymptotic constant extending those in sparse normal mixture detection. In the third domain for even smaller fractions, the detection delay lies in the framework of the classical detection delay formula of Lorden. We show that the optimal detection delay is achieved by the sum of detectability score transformations of either the partial scores or CUSUM scores of the data streams.
引用
收藏
页码:2736 / 2763
页数:28
相关论文
共 19 条