An efficient multigrid method with preconditioned smoother for two-dimensional anisotropic space-fractional diffusion equations

被引:4
|
作者
Xu, Yuan [1 ]
Lei, Siu-Long [1 ]
Sun, Hai-Wei [1 ]
机构
[1] Univ Macau, Dept Math, Macau, Peoples R China
关键词
Fractional diffusion equations; Multigrid method; Preconditioner; Anisotropy; FINITE-DIFFERENCE APPROXIMATIONS; SPECTRAL-ANALYSIS; LINEAR-SYSTEMS; SCHEME; REMOVAL;
D O I
10.1016/j.camwa.2022.08.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The anisotropic space-fractional diffusion equations in two dimensions are discretized by the Crank-Nicolson difference scheme with the weighted and shifted Grunwald formula, which is unconditionally stable and second -order convergence. The coefficient matrix of the discretized linear system possesses a two-level Toeplitz-like structure. Due to the anisotropy, the standard multigrid method converges slowly. By utilizing the GMRES method with a newly proposed tridiagonal preconditioner as a smoother, the convergence rate of the multigrid method can be accelerated significantly. The proposed tridiagonal preconditioner is shown to be invertible and a numerical experiment is given to demonstrate the efficiency of the proposed multigrid method with preconditioned smoother.
引用
收藏
页码:218 / 226
页数:9
相关论文
共 50 条
  • [31] A fast method for variable-order space-fractional diffusion equations
    Jia, Jinhong
    Zheng, Xiangcheng
    Fu, Hongfei
    Dai, Pingfei
    Wang, Hong
    NUMERICAL ALGORITHMS, 2020, 85 (04) : 1519 - 1540
  • [32] Tensor-Train Format Solution with Preconditioned Iterative Method for High Dimensional Time-Dependent Space-Fractional Diffusion Equations with Error Analysis
    Lot-Kei Chou
    Siu-Long Lei
    Journal of Scientific Computing, 2019, 80 : 1731 - 1763
  • [33] A fast numerical method for two-dimensional Riesz space fractional diffusion equations on a convex bounded region
    Chen, S.
    Liu, F.
    Turner, I
    Anh, V
    APPLIED NUMERICAL MATHEMATICS, 2018, 134 : 66 - 80
  • [34] Efficient preconditioners for Radau-IIA time discretization of space fractional diffusion equations
    Chen, Hao
    Xu, Dongping
    NUMERICAL ALGORITHMS, 2020, 83 (04) : 1349 - 1372
  • [35] Fast solution methods for space-fractional diffusion equations
    Wang, Hong
    Du, Ning
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 376 - 383
  • [36] On a Multigrid Method for Tempered Fractional Diffusion Equations
    Bu, Linlin
    Oosterlee, Cornelis W.
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [37] Quasi-Toeplitz splitting iteration methods for unsteady space-fractional diffusion equations
    Dai, Ping-Fei
    Wu, Qing-Biao
    Zhu, Sheng-Feng
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (02) : 699 - 715
  • [38] A lopsided scaled DTS preconditioning method for the discrete space-fractional diffusion equations
    Tang, Shi-Ping
    Huang, Yu-Mei
    APPLIED MATHEMATICS LETTERS, 2022, 131
  • [39] Two-Dimensional Semi-linear Riesz Space Fractional Diffusion Equations in Convex Domains: GLT Spectral Analysis and Multigrid Solvers
    Serra-Capizzano, Stefano
    Sormani, Rosita L.
    Tablino-Possio, Cristina
    LARGE-SCALE SCIENTIFIC COMPUTATIONS, LSSC 2023, 2024, 13952 : 52 - 60
  • [40] Preconditioned iterative methods for space-time fractional advection-diffusion equations
    Zhao, Zhi
    Jin, Xiao-Qing
    Lin, Matthew M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 319 : 266 - 279