PT symmetric Hamiltonian model and Dirac equation in 1+1 dimensions

被引:8
|
作者
Yesiltas, Ozlem [1 ]
机构
[1] Gazi Univ, Fac Sci, Dept Phys, TR-06500 Ankara, Turkey
关键词
POSITION-DEPENDENT MASS; NON-HERMITIAN HAMILTONIANS; KLEIN-GORDON EQUATION; PSEUDO-HERMITICITY; SPIN SYMMETRY; REAL; SUPERSYMMETRY; POTENTIALS; PARTICLE; OSCILLATOR;
D O I
10.1088/1751-8113/46/1/015302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we have introduced a PT symmetric non-Hermitian Hamiltonian model which is given as (H) over cap = omega((b) over cap dagger(b) over cap +1/2)+alpha((b) over cap (2)-((b) over cap dagger)(2)) where omega and alpha are real constants, (b) over cap and (b) over cap dagger are first-order differential operators. The Hermitian form of the Hamiltonian (H) over cap is obtained by suitable mappings and it is interrelated to the time-independent one-dimensional Dirac equation in the presence of position-dependent mass. Then, Dirac equation is reduced to a Schrodinger-like equation and two new complex non-PT symmetric vector potentials are generated. We have obtained a real spectrum for these new complex vector potentials using the shape invariance method. We have searched the real energy values using numerical methods for the specific values of the parameters.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] HAMILTONIAN EMBEDDING OF EINSTEIN-HILBERT ACTION IN (1+1) DIMENSIONS
    Monemzadeh, M.
    Nikoofard, V.
    Ramezani-Arani, R.
    MODERN PHYSICS LETTERS A, 2011, 26 (26) : 1995 - 2006
  • [22] Projective geometry and PT-symmetric Dirac Hamiltonian
    Ng, Y. Jack
    van Dam, H.
    PHYSICS LETTERS B, 2009, 673 (03) : 237 - 239
  • [23] Solitons of (1+1)D cubic-quintic nonlinear Schrodinger equation with PT - symmetric potentials
    Goksel, Izzet
    Antar, Nalan
    Bakirtas, Ilkay
    OPTICS COMMUNICATIONS, 2015, 354 : 277 - 285
  • [24] A toy model of electrodynamics in (1+1) dimensions
    Boozer, A. D.
    EUROPEAN JOURNAL OF PHYSICS, 2007, 28 (03) : 447 - 464
  • [25] (1+1)-dimensional Dirac equation with non-Hermitian interaction
    Sinha, A
    Roy, P
    MODERN PHYSICS LETTERS A, 2005, 20 (31) : 2377 - 2385
  • [26] On how the (1+1)-dimensional Dirac equation arises in classical physics
    McKeon, DGC
    Ord, GN
    FOUNDATIONS OF PHYSICS LETTERS, 1996, 9 (05) : 447 - 456
  • [27] Level crossing analysis of Burgers equation in 1+1 dimensions
    Movahed, M. Sadegh
    Bahraminasab, A.
    Rezazadeh, H.
    Masoudi, A. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (15): : 3903 - 3909
  • [28] Spin-charge separation for paired Dirac fermions in (1+1) dimensions
    Haddad, Laith H.
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (11):
  • [29] First-arrival-time distributions for a Dirac electron in 1+1 dimensions
    Alonso, D
    Mayato, RS
    Leavens, CR
    PHYSICAL REVIEW A, 2002, 66 (04): : 10
  • [30] Quantum Circuit Approximations and Entanglement Renormalization for the Dirac Field in 1+1 Dimensions
    Freek Witteveen
    Volkher Scholz
    Brian Swingle
    Michael Walter
    Communications in Mathematical Physics, 2022, 389 : 75 - 120