Fast modulo 2k-1 multiplication

被引:0
|
作者
Jablonski, Janusz [1 ]
Dylewski, Robert [1 ]
机构
[1] Uniwersytet Zielonogorski, Wydzialu Matemat Informatyki & Ekonometrii, PL-65516 Zielona Gora, Poland
来源
PRZEGLAD ELEKTROTECHNICZNY | 2012年 / 88卷 / 08期
关键词
modulo multiplier; CSA; partial products; Wallace tree;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article represents the author's conception of multiplier modulo 2k-1, leaning on reducer 4:2. The proposed solution gives the possibility of detecting and the quicker marking - the less logical levels, special cases of multiplication, connected with specific values sums of partial products. This presented solution and circuit can accelerate parallel multplier - built on Wallace tree addition. (Fast modulo 2k-1 multiplication).
引用
收藏
页码:145 / 147
页数:3
相关论文
共 50 条
  • [41] Efficient VLSI implementation of modulo (2n ± 1) addition and multiplication
    Zimmermann, Reto
    Proceedings - Symposium on Computer Arithmetic, 1999, : 158 - 167
  • [42] Modulo 2n-1 multiplication/sum-of-squares units
    Adamidis, D
    Vergos, HT
    Proceedings of the 2005 European Conference on Circuit Theory and Design, Vol 2, 2005, : II143 - II146
  • [43] Minimum number of arcs in k-critical digraphs with order at most 2k-1
    Picasarri-Arrieta, Lucas
    Stiebitz, Michael
    DISCRETE MATHEMATICS, 2024, 347 (09)
  • [44] Multiple Periodic Solutions of Differential Delay Equations with 2k-1 Lags
    Li, Lin
    Sun, Hua-fei
    Ge, Wei-gao
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (02): : 390 - 400
  • [45] Analysis and efficient 2k-1 designs for experiments in blocks of size two
    Wang, P. C.
    Cook, R. Dennis
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2012, 28 (01) : 105 - 113
  • [46] Multiple Periodic Solutions of Differential Delay Equations with 2k-1 Lags
    Lin LI
    Hua-fei SUN
    Wei-gao GE
    Acta Mathematicae Applicatae Sinica, 2020, 36 (02) : 390 - 400
  • [47] An Efficient RNS-FIR Filter Implementation using the Moduli Set {2k-1, 2k, 2k-1-1}
    Kotha, Srinivasa Reddy
    Singhvi, Akshit
    Sahoo, S. K.
    2013 IEEE ASIA PACIFIC CONFERENCE ON POSTGRADUATE RESEARCH IN MICROELECTRONICS & ELECTRONICS (PRIMEASIA), 2013, : 191 - 195
  • [48] A New Scaler for the Expanded 4-Moduli Set {2k-1, 2k+1, 22k+1, 22k}
    Hiasat, Ahmad
    2020 11TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2020, : 429 - 433
  • [49] Hard Multiple Generator for Higher Radix Modulo 2n-1 Multiplication
    Muralidharan, Ramya
    Chang, Chip-Hong
    PROCEEDINGS OF THE 2009 12TH INTERNATIONAL SYMPOSIUM ON INTEGRATED CIRCUITS (ISIC 2009), 2009, : 121 - 124
  • [50] Multiplication of polynomials modulo xn
    Cenk, Murat
    Ozbudak, Ferruh
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (29) : 3451 - 3462