Fast modulo 2k-1 multiplication

被引:0
|
作者
Jablonski, Janusz [1 ]
Dylewski, Robert [1 ]
机构
[1] Uniwersytet Zielonogorski, Wydzialu Matemat Informatyki & Ekonometrii, PL-65516 Zielona Gora, Poland
来源
PRZEGLAD ELEKTROTECHNICZNY | 2012年 / 88卷 / 08期
关键词
modulo multiplier; CSA; partial products; Wallace tree;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article represents the author's conception of multiplier modulo 2k-1, leaning on reducer 4:2. The proposed solution gives the possibility of detecting and the quicker marking - the less logical levels, special cases of multiplication, connected with specific values sums of partial products. This presented solution and circuit can accelerate parallel multplier - built on Wallace tree addition. (Fast modulo 2k-1 multiplication).
引用
收藏
页码:145 / 147
页数:3
相关论文
共 50 条
  • [31] REGULAR VLSI ARCHITECTURES FOR MULTIPLICATION MODULO (2N + 1)
    CURIGER, AV
    BONNENBERG, H
    KAESLIN, H
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1991, 26 (07) : 990 - 994
  • [32] BEST K OF 2K-1 TESTS OF HYPOTHESES INVOLVING NORMAL DISTRIBUTION
    TAUBMAN, S
    AMERICAN STATISTICIAN, 1972, 26 (04): : 32 - 33
  • [34] New Residue to Binary converters for the moduli set {2k, 2k-1, 2k-1-1}
    Mohan, P. V. Ananda
    2008 IEEE REGION 10 CONFERENCE: TENCON 2008, VOLS 1-4, 2008, : 379 - 384
  • [35] Residue-to-binary arithmetic converter for the moduli set (2k, 2k-1, 2k-1-1)
    Hiasat, AA
    Abdel-Aty-Zohdy, HS
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1998, 45 (02): : 204 - 209
  • [36] Fast modular multiplication algorithm for calculating the product AB modulo N
    Dept. of Information Engineering, I-Shou University, Kaohsiung County, 84008, Taiwan
    不详
    Inf Process Lett, 3 (77-81):
  • [37] Construction of self-dual binary [2(2k), 2(2k-1), 2(k)]-codes
    Hannusch, Carolin
    Lakatos, Piroska
    ALGEBRA & DISCRETE MATHEMATICS, 2016, 21 (01): : 59 - 68
  • [38] A fast modular multiplication algorithm for calculating the product AB modulo N
    Chen, CY
    Chang, CC
    INFORMATION PROCESSING LETTERS, 1999, 72 (3-4) : 77 - 81
  • [39] Fast Arithmetic Modulo 2xpy ± 1
    Bos, Joppe W.
    Friedberger, Simon
    2017 IEEE 24TH SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH), 2017, : 148 - 155
  • [40] Multiplier with parallel CSA using CRT's specific moduli (2k-1, 2k, 2k+1)
    Kim, WW
    Jang, SD
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 2, 2004, 3044 : 216 - 225