Size of the Plastic Zone Produced by Nanoscratching

被引:22
作者
Alhafez, Iyad Alabd [1 ,2 ]
Ruestes, Carlos J. [3 ,4 ]
Urbassek, Herbert M. [1 ,2 ]
机构
[1] Univ Kaiserslautern, Dept Phys, Erwin Schrodinger Str, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Res Ctr OPTIMAS, Erwin Schrodinger Str, D-67663 Kaiserslautern, Germany
[3] Univ Nacl Cuyo, CONICET, RA-5500 Mendoza, Argentina
[4] Univ Nacl Cuyo, Fac Ciencias Exactas & Nat, RA-5500 Mendoza, Argentina
关键词
Molecular dynamics; Nanoindentation; Scratching; Dislocations; Plasticity; INTERATOMIC POTENTIALS APPROPRIATE; ATOMISTIC SIMULATION; MOLECULAR-DYNAMICS; EDGE DISLOCATION; MD SIMULATION; BCC-IRON; NANOINDENTATION; DEFORMATION; CRYSTALLINE; INDENTATION;
D O I
10.1007/s11249-017-0967-9
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Nanoscratching of ductile materials creates plastic zones surrounding the scratch groove. We approximate the geometry of these zones by a semicylinder with its axis oriented along the scratch direction. The radius and the length of the cylinder, as well as the length of the dislocations in the network created quantify the plasticity generated. Using molecular dynamics simulations, we characterize the plastic zones in six metals with fcc, bcc, and hcp crystal structures. We find that the plastic zone sizes after scratch are comparable to those after indent. Due to dislocation reactions, the dislocation networks simplify, reducing the total length of dislocations. As a consequence, the average dislocation density in the plastic zone stays roughly constant. Individually, we find exceptions from this simple picture. Fcc metals show strong plastic activity, which even increases during scratch. The hcp metals on the other side show the least plastic activity. Here the plasticity may be strongly reduced during scratch and particularly during tip withdrawal.
引用
收藏
页数:12
相关论文
共 49 条
[31]   Molecular dynamic simulations of nanoscratching of silver(100) [J].
Mulliah, D ;
Kenny, SD ;
Smith, R ;
Sanz-Navarro, CF .
NANOTECHNOLOGY, 2004, 15 (03) :243-249
[32]   Nanoscratching of silver(100) with a diamond tip [J].
Mulliah, D ;
Christopher, D ;
Kenny, SD ;
Smith, R .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2003, 202 :294-299
[33]   Ab initio calculations of the generalized stacking fault energy in aluminium alloys [J].
Muzyk, M. ;
Pakiela, Z. ;
Kurzydlowski, K. J. .
SCRIPTA MATERIALIA, 2011, 64 (09) :916-918
[34]   A many body potential for α-Zr.: Application to defect properties [J].
Pasianot, RC ;
Monti, AM .
JOURNAL OF NUCLEAR MATERIALS, 1999, 264 (1-2) :198-205
[35]   FAST PARALLEL ALGORITHMS FOR SHORT-RANGE MOLECULAR-DYNAMICS [J].
PLIMPTON, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 117 (01) :1-19
[36]   A phenomenological dislocation mobility law for bcc metals [J].
Po, Giacomo ;
Cui, Yinan ;
Rivera, David ;
Cereceda, David ;
Swinburne, Tom D. ;
Marian, Jaime ;
Ghoniem, Nasr .
ACTA MATERIALIA, 2016, 119 :123-135
[37]   Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation [J].
Remington, T. P. ;
Ruestes, C. J. ;
Bringa, E. M. ;
Remington, B. A. ;
Lu, C. H. ;
Kad, B. ;
Meyers, M. A. .
ACTA MATERIALIA, 2014, 78 :378-393
[38]  
Ruestes CJ, 2017, APPLIED NANOINDENTATION IN ADVANCED MATERIALS, P315
[39]   Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution [J].
Ruestes, C. J. ;
Stukowski, A. ;
Tang, Y. ;
Tramontina, D. R. ;
Erhart, P. ;
Remington, B. A. ;
Urbassek, H. M. ;
Meyers, M. A. ;
Bringa, E. M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 613 :390-403
[40]   Dislocation-interface interaction in nanoscale fcc metallic bilayers [J].
Shao, Shuai ;
Medyanik, Sergey N. .
MECHANICS RESEARCH COMMUNICATIONS, 2010, 37 (03) :315-319