Size of the Plastic Zone Produced by Nanoscratching

被引:22
作者
Alhafez, Iyad Alabd [1 ,2 ]
Ruestes, Carlos J. [3 ,4 ]
Urbassek, Herbert M. [1 ,2 ]
机构
[1] Univ Kaiserslautern, Dept Phys, Erwin Schrodinger Str, D-67663 Kaiserslautern, Germany
[2] Univ Kaiserslautern, Res Ctr OPTIMAS, Erwin Schrodinger Str, D-67663 Kaiserslautern, Germany
[3] Univ Nacl Cuyo, CONICET, RA-5500 Mendoza, Argentina
[4] Univ Nacl Cuyo, Fac Ciencias Exactas & Nat, RA-5500 Mendoza, Argentina
关键词
Molecular dynamics; Nanoindentation; Scratching; Dislocations; Plasticity; INTERATOMIC POTENTIALS APPROPRIATE; ATOMISTIC SIMULATION; MOLECULAR-DYNAMICS; EDGE DISLOCATION; MD SIMULATION; BCC-IRON; NANOINDENTATION; DEFORMATION; CRYSTALLINE; INDENTATION;
D O I
10.1007/s11249-017-0967-9
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Nanoscratching of ductile materials creates plastic zones surrounding the scratch groove. We approximate the geometry of these zones by a semicylinder with its axis oriented along the scratch direction. The radius and the length of the cylinder, as well as the length of the dislocations in the network created quantify the plasticity generated. Using molecular dynamics simulations, we characterize the plastic zones in six metals with fcc, bcc, and hcp crystal structures. We find that the plastic zone sizes after scratch are comparable to those after indent. Due to dislocation reactions, the dislocation networks simplify, reducing the total length of dislocations. As a consequence, the average dislocation density in the plastic zone stays roughly constant. Individually, we find exceptions from this simple picture. Fcc metals show strong plastic activity, which even increases during scratch. The hcp metals on the other side show the least plastic activity. Here the plasticity may be strongly reduced during scratch and particularly during tip withdrawal.
引用
收藏
页数:12
相关论文
共 49 条
[1]   Planar Defect Nucleation and Annihilation Mechanisms in Nanocontact Plasticity of Metal Surfaces [J].
Alcala, Jorge ;
Dalmau, Roger ;
Franke, Oliver ;
Biener, Monika ;
Biener, Juergen ;
Hodge, Andrea .
PHYSICAL REVIEW LETTERS, 2012, 109 (07)
[2]   Influence of Tip Geometry on Nanoscratching [J].
Alhafez, Iyad Alabd ;
Brodyanski, Alexander ;
Kopnarski, Michael ;
Urbassek, Herbert M. .
TRIBOLOGY LETTERS, 2017, 65 (01)
[3]   Scratching of hcp metals: A molecular-dynamics study [J].
Alhafez, Iyad Alabd ;
Urbassek, Herbert M. .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 113 :187-197
[4]   Nanoindentation of hcp metals: a comparative simulation study of the evolution of dislocation networks [J].
Alhafez, Iyad Alabd ;
Ruestes, Carlos J. ;
Gao, Yu ;
Urbassek, Herbert M. .
NANOTECHNOLOGY, 2016, 27 (04)
[5]   Atomistic simulation of the tension/compression response of textured nanocrystalline HCP Zr [J].
Bertolino, G. ;
Ruda, M. ;
Pasianot, R. ;
Farkas, D. .
COMPUTATIONAL MATERIALS SCIENCE, 2017, 130 :172-182
[6]   FRICTION LUBRICATION AND WEAR - A SURVEY OF WORK DURING LAST DECADE [J].
BOWDEN, FP ;
TABOR, D .
BRITISH JOURNAL OF APPLIED PHYSICS, 1966, 17 (12) :1521-+
[7]   Atomistic modelling of ploughing friction in silver, iron and silicon [J].
D Mulliah ;
D Kenny, S. ;
McGee, E. ;
Smith, Roger ;
Richter, Asta ;
Wolf, B. .
NANOTECHNOLOGY, 2006, 17 (08) :1807-1818
[8]   Extended Finnis-Sinclair potential for bcc and fcc metals and alloys [J].
Dai, X. D. ;
Kong, Y. ;
Li, J. H. ;
Liu, B. X. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (19) :4527-4542
[9]   Plastic anisotropy and dislocation trajectory in BCC metals [J].
Dezerald, Lucile ;
Rodney, David ;
Clouet, Emmanuel ;
Ventelon, Lisa ;
Willaime, Francois .
NATURE COMMUNICATIONS, 2016, 7
[10]   Indentation size effect in metallic materials:: Correcting for the size of the plastic zone [J].
Durst, K ;
Backes, B ;
Göken, M .
SCRIPTA MATERIALIA, 2005, 52 (11) :1093-1097