Uncoupling of longevity and telomere length in C-elegans

被引:53
作者
Raices, M
Maruyama, H
Dillin, A
Karlseder, J
机构
[1] Salk Inst Biol Studies, La Jolla, CA 92037 USA
[2] Kyoto Univ, Grad Sch Biostudies, Kyoto, Japan
关键词
D O I
10.1371/journal.pgen.0010030
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The nematode Caenorhabditis elegans, after completing its developmental stages and a brief reproductive period, spends the remainder of its adult life as an organism consisting exclusively of post-mitotic cells. Here we show that telomere length varies considerably in clonal populations of wild-type worms, and that these length differences are conserved over at least ten generations, suggesting a length regulation mechanism in cis. This observation is strengthened by the finding that the bulk telomere length in different worm strains varies considerably. Despite the close correlation of telomere length and clonal cellular senescence in mammalian cells, nematodes with long telomeres were neither long lived, nor did worm populations with comparably short telomeres exhibit a shorter life span. Conversely, long-lived daf-2 and short-lived daf-16 mutant animals can have either long or short telomeres. Telomere length of post-mitotic cells did not change during the aging process, and the response of animals to stress was found independent of telomere length. Collectively, our data indicate that telomere length and life span can be uncoupled in a post-mitotic setting, suggesting separate pathways for replication-dependent and -independent aging.
引用
收藏
页码:295 / 301
页数:7
相关论文
共 31 条
[1]   MRT-2 checkpoint protein is required for germline immortality and telomere replication in C-elegans [J].
Ahmed, S ;
Hodgkin, J .
NATURE, 2000, 403 (6766) :159-164
[2]   C-elegans RAD-5/CLK-2 defines a new DNA damage checkpoint protein [J].
Ahmed, S ;
Alpi, A ;
Hengartner, MO ;
Gartner, A .
CURRENT BIOLOGY, 2001, 11 (24) :1934-1944
[3]   Cell nonautonomy of C-elegans daf-2 function in the regulation of diapause and life span [J].
Apfeld, J ;
Kenyon, C .
CELL, 1998, 95 (02) :199-210
[4]  
Bénard C, 2001, DEVELOPMENT, V128, P4045
[5]   Telomere shortening and tumor formation by mouse cells lacking telomerase RNA [J].
Blasco, MA ;
Lee, HW ;
Hande, MP ;
Samper, E ;
Lansdorp, PM ;
DePinho, RA ;
Greider, CW .
CELL, 1997, 91 (01) :25-34
[6]   Extension of life-span by introduction of telomerase into normal human cells [J].
Bodnar, AG ;
Ouellette, M ;
Frolkis, M ;
Holt, SE ;
Chiu, CP ;
Morin, GB ;
Harley, CB ;
Shay, JW ;
Lichtsteiner, S ;
Wright, WE .
SCIENCE, 1998, 279 (5349) :349-352
[7]  
BRENNER S, 1974, GENETICS, V77, P71
[8]   Strain-specific telomere length revealed by single telomere length analysis in Caenorhabditis elegans [J].
Cheung, I ;
Schertzer, M ;
Baross, A ;
Rose, AM ;
Lansdorp, PM ;
Baird, DM .
NUCLEIC ACIDS RESEARCH, 2004, 32 (11) :3383-3391
[9]   Protection of mammalian telomeres [J].
de Lange, T .
ONCOGENE, 2002, 21 (04) :532-540
[10]   Rates of behavior and aging specified by mitochondrial function during development [J].
Dillin, A ;
Hsu, AL ;
Arantes-Oliveira, NA ;
Lehrer-Graiwer, J ;
Hsin, H ;
Fraser, AG ;
Kamath, RS ;
Ahringer, J ;
Kenyon, C .
SCIENCE, 2002, 298 (5602) :2398-2401