Uncertainty quantification in kinematic-wave models

被引:20
作者
Wang, Peng [1 ]
Tartakovsky, Daniel M. [1 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
关键词
Uncertainty quantification; Random parameters; Probability density function; Hyperbolic conservation law; STOCHASTIC OVERLAND FLOWS; OPEN-CHANNEL FLOW; EQUATIONS; TRANSPORT; RUNOFF;
D O I
10.1016/j.jcp.2012.07.030
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We develop a probabilistic approach to quantify parametric uncertainty in first-order hyperbolic conservation laws (kinematic wave equations). The approach relies on the derivation of a deterministic equation for the cumulative density function (CDF) of a system state, in which probabilistic descriptions (probability density functions or PDFs) of system parameters and/or initial and boundary conditions serve as inputs. In contrast to PDF equations, which are often used in other contexts, CDF equations allow for straightforward and unambiguous determination of boundary conditions with respect to sample variables. The accuracy and robustness of solutions of the CDF equation for one such system, the Saint-Venant equations of river flows, are investigated via comparison with Monte Carlo simulations. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:7868 / 7880
页数:13
相关论文
共 31 条
  • [1] Abgrall R., 2010, 5 EUR C COMP FLUID D
  • [2] Abgrall R., 2007, SIMPLE FLEXIBLE GENE
  • [3] [Anonymous], LECT NOTES COMPUTATI
  • [4] Stochastic variability of fluvial hydraulic geometry: Mississippi and red rivers
    Buhman, DL
    Gates, TK
    Watson, CC
    [J]. JOURNAL OF HYDRAULIC ENGINEERING, 2002, 128 (04) : 426 - 437
  • [5] Integration of non-Gaussian fields
    Ditlevsen, O
    Mohr, G
    Hoffmeyer, P
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 1996, 11 (01) : 15 - 23
  • [6] DYNAMICS OF FLOOD FREQUENCY
    EAGLESON, PS
    [J]. WATER RESOURCES RESEARCH, 1972, 8 (04) : 878 - &
  • [7] Spatiotemporal stochastic open-channel flow .1. Model and its parameter data
    Gates, TK
    AlZahrani, MA
    [J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1996, 122 (11): : 641 - 651
  • [8] Spatiotemporal stochastic open-channel flow .2. Simulation experiments
    Gates, TK
    AlZahrani, MA
    [J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1996, 122 (11): : 652 - 661
  • [9] Spectral Sampling Method for Uncertainty Propagation in Long-Wave Runup Modeling
    Ge, Liang
    Cheung, Kwok Fai
    [J]. JOURNAL OF HYDRAULIC ENGINEERING, 2011, 137 (03) : 277 - 288
  • [10] Gottlieb D, 2008, COMMUN COMPUT PHYS, V3, P505