Thermal conductivity of (Er1-xYx)2Ti2O7 pyrochlore oxide solid solutions

被引:24
作者
Bryan, Craig [1 ]
Whitman, Catherine A. [1 ,2 ]
Johnson, Michel B. [2 ]
Niven, John F. [3 ]
Murray, Patrick [1 ]
Bourque, Alex [1 ,2 ]
Dabkowska, Hanna A. [4 ]
Gaulin, Bruce D. [4 ,5 ]
White, Mary Anne [1 ,2 ,3 ]
机构
[1] Dalhousie Univ, Dept Chem, Halifax, NS B3H 4R2, Canada
[2] Dalhousie Univ, Mat Res Inst, Halifax, NS B3H 4R2, Canada
[3] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
[4] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada
[5] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada
来源
PHYSICAL REVIEW B | 2012年 / 86卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
CRYSTALS; FLUORITE; GLASSES;
D O I
10.1103/PhysRevB.86.054303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The thermal conductivities of pyrochlore oxide solid solutions of general formula (Er1-xYx)(2)Ti2O7 with 0 <= x <= 1 have been determined for high-quality single crystals aligned along the [110] direction, over the temperature range from 3 to 300 K. Er2Ti2O7 and Y2Ti2O7 are isostructural and Er3+ and Y3+ are within 1% in size, but differ by a factor of about 2 in mass. Therefore, this system allows a clear test of the influence of mass of dopant on thermal conductivity, while controlling for other factors such as dopant size and sample purity. Although Y2Ti2O7 has a higher thermal conductivity than Er2Ti2O7 at T = 300 K, from 3 to 200 K their relative thermal conductivities reverse. Furthermore, we observe significant decrease in thermal conductivity upon doping Er2Ti2O7 with Y3+ ions, showing definitively that, in the temperature range from about 3 to 300 K, the impurity scattering effect of the lighter Y3+ ions is the predominant limiter of the thermal conductivity. This conclusion is supported by the finding that the phonon mean free path of the doped compounds decreases with increased dopant concentrations, increasing again as pure Y2Ti2O7 is approached.
引用
收藏
页数:7
相关论文
共 35 条
[1]  
[Anonymous], 2002, PPMS HARDW OPT MAN
[2]   Thermal conductivity of reference solid materials [J].
Assael, MJ ;
Gialou, K ;
Kakosimos, K ;
Metaxa, I .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2004, 25 (02) :397-408
[3]  
Berman R., 1976, THERMAL CONDUCTION S
[4]  
CAHILL DG, 1988, ANNU REV PHYS CHEM, V39, P93, DOI 10.1146/annurev.physchem.39.1.93
[5]   LOWER LIMIT TO THE THERMAL-CONDUCTIVITY OF DISORDERED CRYSTALS [J].
CAHILL, DG ;
WATSON, SK ;
POHL, RO .
PHYSICAL REVIEW B, 1992, 46 (10) :6131-6140
[6]  
Carwile L.C. K., 1966, Thermal conductivity of polystyrene: Selected values
[7]   Phonon heat conduction in nanostructures [J].
Chen, G .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2000, 39 (04) :471-480
[8]   Materials selection guidelines for low thermal conductivity thermal barrier coatings [J].
Clarke, DR .
SURFACE & COATINGS TECHNOLOGY, 2003, 163 :67-74
[9]  
Dabkowska H. A., 2009, SPRINGER HDB CRYSTAL
[10]   Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore [J].
Feng, J. ;
Xiao, B. ;
Wan, C. L. ;
Qu, Z. X. ;
Huang, Z. C. ;
Chen, J. C. ;
Zhou, R. ;
Pan, W. .
ACTA MATERIALIA, 2011, 59 (04) :1742-1760