The human spindle assembly checkpoint protein Bub3 is required for the establishment of efficient kinetochore-microtubule attachments

被引:76
作者
Logarinho, Elsa [1 ,2 ]
Resende, Tatiana [1 ]
Torres, Claudia [1 ]
Bousbaa, Hassan [1 ]
机构
[1] CESPU, Inst Super Ciencias Saude Norte, CICS, P-4585116 Gandra PRD, Portugal
[2] Univ Minho, Life & Hlth Sci Res Inst ICVS, Sch Hlth Sci, P-4710057 Braga, Portugal
关键词
D O I
10.1091/mbc.E07-07-0633
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The spindle assembly checkpoint monitors the status of kinetochore-microtubule (K-MT) attachments and delays anaphase onset until full metaphase alignment is achieved. Recently, the role of spindle assembly checkpoint proteins was expanded with the discovery that BubR1 and Bub1 are implicated in the regulation of K-MT attachments. One unsolved question is whether Bub3, known to form cell cycle constitutive complexes with both BubR1 and Bub1, is also required for proper chromosome-to-spindle attachments. Using RNA interference and high-resolution microscopy, we analyzed K-MT interactions in Bub3-depleted cells and compared them to those in Bub1-or BubR1-depleted cells. We found that Bub3 is essential for the establishment of correct K-MT attachments. In contrast to BubR1 depletion, which severely compromises chromosome attachment and alignment, we found Bub3 and Bub1 depletions to produce defective K-MT attachments that, however, still account for significant chromosome congression. After Aurora B inhibition, alignment defects become severer in Bub3-and Bub1-depleted cells, while partially rescued in BubR1-depleted cells, suggesting that Bub3 and Bub1 depletions perturb K-MT attachments distinctly from BubR1. Interestingly, misaligned chromosomes in Bub3-and Bub1-depleted cells were found to be predominantly bound in a side-on configuration. We propose that Bub3 promotes the formation of stable end-on bipolar attachments.
引用
收藏
页码:1798 / 1813
页数:16
相关论文
共 63 条
[1]   CHROMOSOME MOTION DURING ATTACHMENT TO THE VERTEBRATE SPINDLE - INITIAL SALTATORY-LIKE BEHAVIOR OF CHROMOSOMES AND QUANTITATIVE-ANALYSIS OF FORCE PRODUCTION BY NASCENT KINETOCHORE FIBERS [J].
ALEXANDER, SP ;
RIEDER, CL .
JOURNAL OF CELL BIOLOGY, 1991, 113 (04) :805-815
[2]   Mal3, the fission yeast EB1 homologue, cooperates with Bub1 spindle checkpoint to prevent monopolar attachment [J].
Asakawa, K ;
Toya, M ;
Sato, M ;
Kanai, M ;
Kume, K ;
Goshima, T ;
Garcia, MA ;
Hirata, D ;
Toda, T .
EMBO REPORTS, 2005, 6 (12) :1194-1200
[3]   Localization of the Drosophila checkpoint control protein Bub3 to the kinetochore requires Bub1 but not Zw10 or Rod [J].
Basu, J ;
Logarinho, E ;
Herrmann, S ;
Bousbaa, H ;
Li, ZX ;
Chan, GKT ;
Yen, TJ ;
Sunkel, CE ;
Goldberg, ML .
CHROMOSOMA, 1998, 107 (6-7) :376-385
[4]   The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the, spindle checkpoint [J].
Biggins, S ;
Murray, AW .
GENES & DEVELOPMENT, 2001, 15 (23) :3118-3129
[5]   Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function [J].
Brady, DM ;
Hardwick, KG .
CURRENT BIOLOGY, 2000, 10 (11) :675-678
[6]   Analysis of Bub3 spindle checkpoint function in Xenopus egg extracts [J].
Campbell, L ;
Hardwick, KG .
JOURNAL OF CELL SCIENCE, 2003, 116 (04) :617-628
[7]   Kinetochore structure and function [J].
Chan, GK ;
Liu, ST ;
Yen, TJ .
TRENDS IN CELL BIOLOGY, 2005, 15 (11) :589-598
[8]   Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint [J].
Chung, EN ;
Chen, RH .
NATURE CELL BIOLOGY, 2003, 5 (08) :748-753
[9]   Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling [J].
Cleveland, DW ;
Mao, YH ;
Sullivan, KF .
CELL, 2003, 112 (04) :407-421
[10]   The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint [J].
De Antoni, A ;
Pearson, CG ;
Cimini, D ;
Canman, JC ;
Sala, V ;
Nezi, L ;
Mapelli, M ;
Sironi, L ;
Faretta, M ;
Salmon, ED ;
Musacchio, A .
CURRENT BIOLOGY, 2005, 15 (03) :214-225