Improve the Performance of Transfer Learning Without Fine-Tuning Using Dissimilarity-Based Multi-view Learning for Breast Cancer Histology Images

被引:35
作者
Cao, Hongliu [1 ,2 ]
Bernard, Simon [2 ]
Heutte, Laurent [2 ]
Sabourin, Robert [1 ]
机构
[1] Univ Quebec, Lab Imagerie Vis & Intelligence Artificielle, Ecole Technol Super, Montreal, PQ, Canada
[2] Univ Rouen Normandie, LITIS, EA 4108, BP 12, F-76801 St Etienne Du Rouvray, France
来源
IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018) | 2018年 / 10882卷
关键词
Breast cancer; Dissimilarity; Random forest; Deep learning; Multi-view; Transfer learning; High dimensional low sample size;
D O I
10.1007/978-3-319-93000-8_88
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Breast cancer is one of the most common types of cancer and leading cancer-related death causes for women. In the context of ICIAR 2018 Grand Challenge on Breast Cancer Histology Images, we compare one handcrafted feature extractor and five transfer learning feature extractors based on deep learning. We find out that the deep learning networks pretrained on ImageNet have better performance than the popular handcrafted features used for breast cancer histology images. The best feature extractor achieves an average accuracy of 79.30%. To improve the classification performance, a random forest dissimilarity based integration method is used to combine different feature groups together. When the five deep learning feature groups are combined, the average accuracy is improved to 82.90% (best accuracy 85.00%). When handcrafted features are combined with the five deep learning feature groups, the average accuracy is improved to 87.10% (best accuracy 93.00%).
引用
收藏
页码:779 / 787
页数:9
相关论文
共 18 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]  
[Anonymous], 2013, J OPEN RES STW
[3]   Classification of breast cancer histology images using Convolutional Neural Networks [J].
Araujo, Teresa ;
Aresta, Guilherme ;
Castro, Eduardo ;
Rouco, Jose ;
Aguiar, Paulo ;
Eloy, Catarina ;
Polonia, Antonio ;
Campilho, Aurelio .
PLOS ONE, 2017, 12 (06)
[4]   A random forest guided tour [J].
Biau, Gerard ;
Scornet, Erwan .
TEST, 2016, 25 (02) :197-227
[5]  
Bill J., 2014, Serdica Journal of Computing, V8, P137
[6]  
Cao H., 2018, ARXIVPREPRINTARXIV18
[7]   The Wonderful Colors of the Hematoxylin-Eosin Stain in Diagnostic Surgical Pathology [J].
Chan, John K. C. .
INTERNATIONAL JOURNAL OF SURGICAL PATHOLOGY, 2014, 22 (01) :12-32
[8]   CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma [J].
Coroller, Thibaud P. ;
Grossmann, Patrick ;
Hou, Ying ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Hermann, Gretchen ;
Lambin, Philippe ;
Haibe-Kains, Benjamin ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
RADIOTHERAPY AND ONCOLOGY, 2015, 114 (03) :345-350
[9]   Fast automated cell phenotype image classification [J].
Hamilton, Nicholas A. ;
Pantelic, Radosav S. ;
Hanson, Kelly ;
Teasdale, Rohan D. .
BMC BIOINFORMATICS, 2007, 8 (1)
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778