Curcumin protects renal tubular epithelial cells from high glucose-induced epithelial-to-mesenchymal transition through Nrf2-mediated upregulation of heme oxygenase-1

被引:75
|
作者
Zhang, Xiuli [1 ,2 ,3 ]
Liang, Dan [4 ]
Guo, Lin [5 ]
Liang, Wei [1 ]
Jiang, Yan [1 ]
Li, Hongjuan [4 ]
Zhao, Yue [2 ]
Lu, Shumin [1 ]
Chi, Zhi-Hong [3 ]
机构
[1] China Med Univ, Benxi Ctr Hosp, Dept Nephrol, Benxi 117000, Liaoning, Peoples R China
[2] China Med Univ, Key Lab Med Cell Biol, Minist Educ, Shenyang 110001, Liaoning, Peoples R China
[3] China Med Univ, Dept Pathophysiol, Shenyang 110001, Liaoning, Peoples R China
[4] Troops 95935 Unit, Harbin 150111, Heilongjiang, Peoples R China
[5] Troops 93253 Unit, Harbin 150111, Heilongjiang, Peoples R China
关键词
renal tubular epithelial cells; high glucose; curcumin; epithelial-to-mesenchymal transition; nuclear factor (erythroid-derived 2)-like 2; TRANSCRIPTION FACTOR NRF2; OXIDATIVE-STRESS; MYOFIBROBLAST TRANSDIFFERENTIATION; DIABETIC-NEPHROPATHY; INDUCED APOPTOSIS; GENE-EXPRESSION; MULTIPLE SITES; FIBROSIS; KIDNEY; ACTIVATION;
D O I
10.3892/mmr.2015.3556
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Curcumin has been observed to exhibit an anti-fibrotic effect in the liver, lung and gallbladder. However, the mechanisms underlying the cytoprotective effects of curcumin remain to be elucidated. The epithelial-to-mesenchymal transition (EMT) of mature tubular epithelial cells in the kidney is considered to contribute to the renal accumulation of matrix proteins associated with diabetic nephropathy. The EMT is also closely associated with the progression of renal interstitial fibrosis and oxidative stress. This process may occur through abrogation of high glucose (HG)-induced oxidative stress via activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) in kidney tubular epithelial cells. In the present study, the effect of curcumin on HG-induced EMT in the NRK-52E normal rat kidney tubular epithelial cell line was investigated, and whether the effect of curcumin was mediated by the induction of Nrf2 and HO-1 expression was examined. The present study revealed that curcumin was able to prevent events associated with EMT, including the downregulation of E-cadherin and the increased expression of -smooth muscle actin. Further analysis revealed that the expression levels of Nrf2 and HO-1 protein were elevated to a greater extent in the curcumin pretreated NRK-52E cells compared with those of the control. Notably, knockdown of Nrf2 with small interfering RNA prevented the curcumin-induced elevation in expression of HO-1 and the associated anti-fibrotic effects. In conclusion, the present findings suggested that curcumin may be significant in cellular antioxidant defense, through the activation of Nrf2 and HO-1, thereby protecting the NRK-52E cells from HG-induced EMT.
引用
收藏
页码:1347 / 1355
页数:9
相关论文
共 50 条
  • [41] The Role of the p38 MAPK Signaling Pathway in High Glucose-Induced Epithelial-Mesenchymal Transition of Cultured Human Renal Tubular Epithelial Cells
    Lv, Zhi-Mei
    Wang, Qun
    Wan, Qiang
    Lin, Jian-Gong
    Hu, Meng-Si
    Liu, You-Xia
    Wang, Rong
    PLOS ONE, 2011, 6 (07):
  • [42] MKP2 inhibits TGF-β1-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells through a JNK-dependent pathway
    Li, Zhenzhen
    Liu, Xianghua
    Tian, Fengyan
    Li, Ji
    Wang, Qingwei
    Gu, Chaohui
    CLINICAL SCIENCE, 2018, 132 (21) : 2339 - 2355
  • [43] Rehmannioside A protects against high glucose-induced apoptosis and oxidative stress of renal tubular epithelial cells by inhibiting the MAPK pathway
    Yang, Lili
    Huai, Lei
    Xu, Qunhong
    Wang, Benyong
    TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 2021, 20 (08) : 1553 - 1558
  • [44] Gambogenic acid protects against high glucose-induced damage of renal tubular epithelial cells by inhibiting pyroptosis through regulating the AMPK–TXNIP pathway
    Li N.
    Wen X.
    Tang M.
    Peng X.
    Sheng Q.
    Liu P.
    Quality Assurance and Safety of Crops and Foods, 2022, 14 (02) : 40 - 46
  • [45] Oxidative Stress-Activated NHE1 Is Involved in High Glucose-Induced Apoptosis in Renal Tubular Epithelial Cells
    Wu, Yiqing
    Zhang, Min
    Liu, Rui
    Zhao, Chunjie
    YONSEI MEDICAL JOURNAL, 2016, 57 (05) : 1252 - 1259
  • [46] Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells
    Zhao, X.
    Liu, G.
    Shen, H.
    Gao, B.
    Li, X.
    Fu, J.
    Zhou, J.
    Ji, Q.
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2015, 35 (03) : 684 - 692
  • [47] Overexpressed LINC01510 Attenuates Epithelial-Mesenchymal Transition in High Glucose-Induced Renal Tubular Epithelial Cells via Inactivating MMP7
    Zhang, Yifan
    Shao, Guojian
    Lin, Zhaoyu
    Xie, Zhoutao
    ANNALS OF CLINICAL AND LABORATORY SCIENCE, 2022, 52 (03) : 367 - 373
  • [48] KIM-1 Mediates High Glucose-Induced Autophagy and Apoptosis in Renal Tubular Epithelial Cells
    Gou, Rong
    Chen, Juntong
    Sheng, Shifeng
    Wang, Ruiqiang
    Fang, Yudong
    Yang, Zijun
    Wang, Liuwei
    Tang, Lin
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2016, 38 (06) : 2479 - 2488
  • [49] Involvement of Nrf2-GSH signaling in TGFβ1-stimulated epithelial-to-mesenchymal transition changes in rat renal tubular cells
    In-geun Ryoo
    Dong-ha Shin
    Kyung-Shin Kang
    Mi-Kyoung Kwak
    Archives of Pharmacal Research, 2015, 38 : 272 - 281
  • [50] Hedyotis diffusa Willd extract protects rat renal tubular epithelial cells from high glucose-induced injury by inhibiting PI3K/AKT signaling pathway
    Dong, Haiping
    Zhang, Qing
    SCIENCEASIA, 2022, 48 (05): : 532 - 537