机构:
Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R ChinaTsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
Sun, Zelin
[1
]
Wang, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R ChinaTsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
Wang, Yi
[2
]
机构:
[1] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[2] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
来源:
2022 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (I&CPS ASIA 2022)
|
2022年
基金:
中国国家自然科学基金;
关键词:
Energy forecasting;
ensemble learning;
data market;
data valuation;
Shapley value;
smart grid;
D O I:
10.1109/ICPSAsia55496.2022.9949731
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
Load forecasting is one of the bases of power system economic scheduling. High accurate load forecasts help the power system operator make better resource allocation and thus reduce the operational cost. The system operator can buy load forecasts in the data market and then combine them in an ensemble model to enhance the quality of final forecasts. Consequently, the operator should share forecast providers (agents) with the operational profit (or reduced cost) fairly. However, data from different agents affect the ensemble forecast jointly, making it hard to quantify the contribution of each individual forecast. There are few works regarding load forecast valuation in an ensemble model, especially in the electricity market. To fill this gap, this paper investigates valuation approaches. Four profit-sharing schemes with different computational complexity and synergy considerations are proposed and compared. Case studies on a real-world dataset illustrate how forecasts can be evaluated in an ensemble model.
机构:
Sun Yat Sen Univ, Sch Geog & Planning, Guangzhou, Peoples R China
Sun Yat Sen Univ, Guangdong Key Lab Urbanizat & Geosimulat, Guangzhou, Peoples R ChinaSun Yat Sen Univ, Sch Geog & Planning, Guangzhou, Peoples R China
Lin, Yongen
Wang, Dagang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Geog & Planning, Guangzhou, Peoples R China
Sun Yat Sen Univ, Guangdong Key Lab Urbanizat & Geosimulat, Guangzhou, Peoples R ChinaSun Yat Sen Univ, Sch Geog & Planning, Guangzhou, Peoples R China
Wang, Dagang
Zhu, Jinxin
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Geog & Planning, Guangzhou, Peoples R China
Sun Yat Sen Univ, Guangdong Key Lab Urbanizat & Geosimulat, Guangzhou, Peoples R ChinaSun Yat Sen Univ, Sch Geog & Planning, Guangzhou, Peoples R China
Zhu, Jinxin
Sun, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Geog & Planning, Guangzhou, Peoples R China
Sun Yat Sen Univ, Guangdong Key Lab Urbanizat & Geosimulat, Guangzhou, Peoples R ChinaSun Yat Sen Univ, Sch Geog & Planning, Guangzhou, Peoples R China
Sun, Wei
Shen, Chaopeng
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Civil & Environm Engn, University Pk, PA 16802 USASun Yat Sen Univ, Sch Geog & Planning, Guangzhou, Peoples R China
Shen, Chaopeng
Wei, Shangguan
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Atmospher Sci, Zhuhai, Peoples R ChinaSun Yat Sen Univ, Sch Geog & Planning, Guangzhou, Peoples R China
机构:
CSIRO Land & Water, Clayton, Vic, Australia
Univ Tasmania, Inst Marine & Antarctic Studies, Battery Point, Tas, AustraliaCSIRO Land & Water, Clayton, Vic, Australia
Bennett, James C.
Wang, Q. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, Dept Infrastruct Engn, Parkville, Vic, AustraliaCSIRO Land & Water, Clayton, Vic, Australia
Wang, Q. J.
Robertson, David E.
论文数: 0引用数: 0
h-index: 0
机构:
CSIRO Land & Water, Clayton, Vic, AustraliaCSIRO Land & Water, Clayton, Vic, Australia
Robertson, David E.
Bridgart, Robert
论文数: 0引用数: 0
h-index: 0
机构:
CSIRO Land & Water, Clayton, Vic, AustraliaCSIRO Land & Water, Clayton, Vic, Australia
Bridgart, Robert
Lerat, Julien
论文数: 0引用数: 0
h-index: 0
机构:
Bur Meteorol, Canberra, ACT, AustraliaCSIRO Land & Water, Clayton, Vic, Australia
Lerat, Julien
Li, Ming
论文数: 0引用数: 0
h-index: 0
机构:
CSIRO Data61, Kensington, WA, AustraliaCSIRO Land & Water, Clayton, Vic, Australia