The batch-mode group lasso algorithms suffer from the inefficiency and poor scalability, and online learning algorithms for group lasso, is a promising tool for attacking the large-scale problem. However, the low time complexity of current online algorithm often be accompanied by low convergence rate, and the faster convergence rate is a key problem to guarantee the online learning algorithms. We develop a novel accelerated online learning algorithm to solve sparse group lasso model. The sparse group lasso model can achieve more sparsity in both the group level and the individual feature level. By adopting dual averaging method, its worst-case time complexity and memory cost at each iteration are both in the order of O(d), where d is the number of dimensions. Moreover, our online algorithm has a accelerated capability, and its theoretical convergence rate is O(1/T-2) up to T-th step. The experimental results on synthetic and real-world datasets demonstrate the merits of the proposed online algorithm for sparse group lasso.
机构:
Harbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen 518055, Peoples R ChinaHarbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen 518055, Peoples R China
Xie, Zongxia
Xu, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen 518055, Peoples R ChinaHarbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen 518055, Peoples R China
机构:
Arizona State Univ, Dept Comp Sci & Engn, Tempe, AZ 85287 USA
Arizona State Univ, Ctr Evolutionary Med & Informat, Biodesign Inst, Tempe, AZ 85287 USAArizona State Univ, Dept Comp Sci & Engn, Tempe, AZ 85287 USA
Yuan, Lei
Liu, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Siemens Corp Res, Princeton, NJ 08540 USAArizona State Univ, Dept Comp Sci & Engn, Tempe, AZ 85287 USA
Liu, Jun
Ye, Jieping
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Dept Comp Sci & Engn, Tempe, AZ 85287 USA
Arizona State Univ, Ctr Evolutionary Med & Informat, Biodesign Inst, Tempe, AZ 85287 USAArizona State Univ, Dept Comp Sci & Engn, Tempe, AZ 85287 USA
机构:
Univ Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA 19104 USAUniv Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA 19104 USA
Cai, T. Tony
Zhang, Anru R.
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Biostat & Bioinformat, Durham, NC 27710 USA
Duke Univ, Dept Comp Sci Math & Stat Sci, Durham, NC 27710 USAUniv Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA 19104 USA
Zhang, Anru R.
Zhou, Yuchen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA 19104 USAUniv Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA 19104 USA
机构:
Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R ChinaHong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
Li, Xinxin
Mo, Lili
论文数: 0引用数: 0
h-index: 0
机构:
United Int Coll, Div Sci & Technol, Zhuhai, Peoples R ChinaHong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
Mo, Lili
Yuan, Xiaoming
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R ChinaHong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
Yuan, Xiaoming
Zhang, Jianzhong
论文数: 0引用数: 0
h-index: 0
机构:
United Int Coll, Div Sci & Technol, Zhuhai, Peoples R ChinaHong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China