共 50 条
Synthesis of avenanthramides using engineered Escherichia coli
被引:16
|作者:
Lee, Su Jin
[1
]
Sim, Geun Young
[1
]
Kang, Hyunook
[1
]
Yeo, Won Seok
[1
]
Kim, Bong-Gyu
[2
]
Ahn, Joong-Hoon
[1
]
机构:
[1] Konkuk Univ, Bio Mol Informat Ctr, Dept Integrat Biosci & Biotechnol, Seoul 05029, South Korea
[2] Gyeongnam Natl Univ Sci & Technol, Dept Forest Resources, 33 Dongjin Ro, Jinju Si 52725, Gyeongsangman D, South Korea
来源:
MICROBIAL CELL FACTORIES
|
2018年
/
17卷
基金:
新加坡国家研究基金会;
关键词:
Avenanthramides;
Escherichia coli;
Metabolic engineering;
BACTERIAL SYNTHESIS;
ACID-AMIDES;
HYDROXYCINNAMOYL;
ACYLTRANSFERASES;
BIOSYNTHESIS;
METABOLISM;
EXPRESSION;
EVOLUTION;
STRAINS;
GENES;
D O I:
10.1186/s12934-018-0896-9
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Background: Hydroxycinnamoyl anthranilates, also known as avenanthramides (avns), are a group of phenolic alkaloids with anti-inflammatory, antioxidant, anti-itch, anti-irritant, and antiatherogenic activities. Some avenanthramides (avn A-H and avn K) are conjugates of hydroxycinnamic acids (HC), including p-coumaric acid, caffeic acid, and ferulic acid, and anthranilate derivatives, including anthranilate, 4-hydroxyanthranilate, and 5-hydroxyanthranilate. Avns are primarily found in oat grain, in which they were originally designated as phytoalexins. Knowledge of the avns biosynthesis pathway has now made it possible to synthesize avns through a genetic engineering strategy, which would help to further elucidate their properties and exploit their beneficial biological activities. The aim of the present study was to synthesize natural avns in Escherichia coli to serve as a valuable resource. Results: We synthesized nine avns in E. coli. We first synthesized avn D from glucose in E. coli harboring tyrosine ammonia lyase (TAL), 4-coumarate: coenzyme A ligase (4CL), anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT), and anthranilate synthase (trpEG). A trpD deletion mutant was used to increase the amount of anthranilate in E. coli. After optimizing the incubation temperature and cell density, approximately 317.2 mg/L of avn D was synthesized. Avn E and avn F were then synthesized from avn D, using either E. coli harboring HpaBC and SOMT9 or E. coli harboring HapBC alone, respectively. Avn A and avn G were synthesized by feeding 5-hydroxyanthranilate or 4-hydroxyanthranilate to E. coli harboring TAL, 4CL, and HCBT. Avn B, avn C, avn H, and avn K were synthesized from avn A or avn G, using the same approach employed for the synthesis of avn E and avn F from avn D. Conclusions: Using different HCs, nine avns were synthesized, three of which (avn D, avn E, and avn F) were synthesized from glucose in E. coli. These diverse avns provide a strategy to synthesize both natural and unnatural avns, setting a foundation for exploring the biological activities of diverse avns.
引用
收藏
页数:12
相关论文