Synthesis of avenanthramides using engineered Escherichia coli

被引:16
|
作者
Lee, Su Jin [1 ]
Sim, Geun Young [1 ]
Kang, Hyunook [1 ]
Yeo, Won Seok [1 ]
Kim, Bong-Gyu [2 ]
Ahn, Joong-Hoon [1 ]
机构
[1] Konkuk Univ, Bio Mol Informat Ctr, Dept Integrat Biosci & Biotechnol, Seoul 05029, South Korea
[2] Gyeongnam Natl Univ Sci & Technol, Dept Forest Resources, 33 Dongjin Ro, Jinju Si 52725, Gyeongsangman D, South Korea
来源
MICROBIAL CELL FACTORIES | 2018年 / 17卷
基金
新加坡国家研究基金会;
关键词
Avenanthramides; Escherichia coli; Metabolic engineering; BACTERIAL SYNTHESIS; ACID-AMIDES; HYDROXYCINNAMOYL; ACYLTRANSFERASES; BIOSYNTHESIS; METABOLISM; EXPRESSION; EVOLUTION; STRAINS; GENES;
D O I
10.1186/s12934-018-0896-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Hydroxycinnamoyl anthranilates, also known as avenanthramides (avns), are a group of phenolic alkaloids with anti-inflammatory, antioxidant, anti-itch, anti-irritant, and antiatherogenic activities. Some avenanthramides (avn A-H and avn K) are conjugates of hydroxycinnamic acids (HC), including p-coumaric acid, caffeic acid, and ferulic acid, and anthranilate derivatives, including anthranilate, 4-hydroxyanthranilate, and 5-hydroxyanthranilate. Avns are primarily found in oat grain, in which they were originally designated as phytoalexins. Knowledge of the avns biosynthesis pathway has now made it possible to synthesize avns through a genetic engineering strategy, which would help to further elucidate their properties and exploit their beneficial biological activities. The aim of the present study was to synthesize natural avns in Escherichia coli to serve as a valuable resource. Results: We synthesized nine avns in E. coli. We first synthesized avn D from glucose in E. coli harboring tyrosine ammonia lyase (TAL), 4-coumarate: coenzyme A ligase (4CL), anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT), and anthranilate synthase (trpEG). A trpD deletion mutant was used to increase the amount of anthranilate in E. coli. After optimizing the incubation temperature and cell density, approximately 317.2 mg/L of avn D was synthesized. Avn E and avn F were then synthesized from avn D, using either E. coli harboring HpaBC and SOMT9 or E. coli harboring HapBC alone, respectively. Avn A and avn G were synthesized by feeding 5-hydroxyanthranilate or 4-hydroxyanthranilate to E. coli harboring TAL, 4CL, and HCBT. Avn B, avn C, avn H, and avn K were synthesized from avn A or avn G, using the same approach employed for the synthesis of avn E and avn F from avn D. Conclusions: Using different HCs, nine avns were synthesized, three of which (avn D, avn E, and avn F) were synthesized from glucose in E. coli. These diverse avns provide a strategy to synthesize both natural and unnatural avns, setting a foundation for exploring the biological activities of diverse avns.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Synthesis of avenanthramides using engineered Escherichia coli
    Su Jin Lee
    Geun Young Sim
    Hyunook Kang
    Won Seok Yeo
    Bong-Gyu Kim
    Joong-Hoon Ahn
    Microbial Cell Factories, 17
  • [2] Synthesis of α-galactosyl epitopes by metabolically engineered Escherichia coli
    Gebus, Caroline
    Cottin, Claire
    Randriantsoa, Mialy
    Drouillard, Sophie
    Samain, Eric
    CARBOHYDRATE RESEARCH, 2012, 361 : 83 - 90
  • [3] Microbial synthesis of pyrogallol using genetically engineered Escherichia coli
    Wang, Jia
    Shen, Xiaolin
    Yuan, Qipeng
    Yan, Yajun
    METABOLIC ENGINEERING, 2018, 45 : 134 - 141
  • [4] Synthesis of Methylated Anthranilate Derivatives Using Engineered Strains of Escherichia coli
    Lee, Hye Lim
    Kim, Song-Yi
    Kim, Eun Ji
    Han, Da Ye
    Kim, Bong-Gyu
    Ahn, Joong-Hoon
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 29 (06) : 839 - 844
  • [5] Production of itaconic acid using metabolically engineered Escherichia coli
    Okamoto, Shusuke
    Chin, Taejun
    Hiratsuka, Ken
    Aso, Yuji
    Tanaka, Yasutomo
    Takahashi, Tetsuya
    Ohara, Hitomi
    JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, 2014, 60 (05) : 191 - 197
  • [6] Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli
    Wu, Junjun
    Zhou, Peng
    Zhang, Xia
    Dong, Mingsheng
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2017, 44 (07) : 1083 - 1095
  • [7] Production of Glyoxylate from Glucose in Engineered Escherichia coli
    Long, Bui Hoang Dang
    Nishiyama, Masahiro
    Sato, Rintaro
    Tanaka, Tomonari
    Ohara, Hitomi
    Aso, Yuji
    FERMENTATION-BASEL, 2023, 9 (06):
  • [8] Biosynthesis of catechol melanin from glycerol employing metabolically engineered Escherichia coli
    Mejia-Caballero, Alejandra
    de Anda, Ramon
    Hernandez-Chavez, Georgina
    Rogg, Simone
    Martinez, Alfredo
    Bolivar, Francisco
    Castano, Victor M.
    Gosset, Guillermo
    MICROBIAL CELL FACTORIES, 2016, 15
  • [9] Production of lycopene by metabolically-engineered Escherichia coli
    Sun, Tao
    Miao, Liangtian
    Li, Qingyan
    Dai, Guanping
    Lu, Fuping
    Liu, Tao
    Zhang, Xueli
    Ma, Yanhe
    BIOTECHNOLOGY LETTERS, 2014, 36 (07) : 1515 - 1522
  • [10] Production of extracellular fatty acid using engineered Escherichia coli
    Liu, Hui
    Yu, Chao
    Feng, Dexin
    Cheng, Tao
    Meng, Xin
    Liu, Wei
    Zou, Huibin
    Xian, Mo
    MICROBIAL CELL FACTORIES, 2012, 11