The Burr-Weibull Power Series Class of Distributions

被引:9
作者
Oluyede, Broderick O. [1 ]
Mdlongwa, Precious [2 ]
Makubate, Boikanyo [2 ]
Huang, Shujiao [3 ]
机构
[1] Georgia Southern Univ, Dept Math Sci, Statesboro, GA 30460 USA
[2] Botswana Int Univ Sci & Technol, Dept Math & Stat Sci, Palapye, Botswana
[3] BBVA Compass, Houston, TX USA
关键词
Burr-Weibull distribution; Poisson distribution; Weibull distribution; Burr distribution; maximum likelihood estimation; DISTRIBUTION MODEL;
D O I
10.17713/ajs.v48i1.633
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new generalized class of distributions called the Burr-Weibull Power Series (BWPS) class of distributions is developed and explored. This class of distributions generalizes the Burr power series and Weibull power series classes of distributions, respectively. A special model of the BWPS class of distributions, the new Burr-Weibull Poisson (BWP) distribution is considered and some of its mathematical properties are obtained. The BWP distribution contains several new and well known sub-models, including Burr-Weibull, Burrexponential Poisson, Burr-exponential, Burr-Rayleigh Poisson, Burr-Rayleigh, Burr-Poisson, Burr, Lomax-exponential Poisson, Lomax-Weibull, Lomax-exponential, Lomax-Rayleigh, Lomax-Poisson, Lomax, Weibull, Rayleigh and exponential distributions. Maximum likelihood estimation technique is used to estimate the model parameters followed by a Monte Carlo simulation study. Finally an application of the BWP model to a real data set is presented to illustrate the usefulness of the proposed class of distributions.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 12 条
  • [1] [Anonymous], 1994, COMPUT STAT DATA AN, DOI DOI 10.1016/0167-9473(96)90015-8
  • [2] Barlow RE, 1984, P CAN C APPL STAT
  • [3] Cumulative frequency functions
    Burr, IW
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1942, 13 : 215 - 232
  • [4] A GENERAL-PURPOSE APPROXIMATE GOODNESS-OF-FIT TEST
    CHEN, GM
    BALAKRISHNAN, N
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 1995, 27 (02) : 154 - 161
  • [5] Foya S, 2017, ELECTRON J APPL STAT, V10, P206, DOI 10.1285/i20705948v10n1p206
  • [6] Mdlongwa P, 2017, ELECTRON J APPL STAT, V10, P118, DOI 10.1285/i20705948v10n1p118
  • [7] A compound class of Weibull and power series distributions
    Morais, Alice Lemos
    Barreto-Souza, Wagner
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (03) : 1410 - 1425
  • [8] General results for the beta-modified Weibull distribution
    Nadarajah, Saralees
    Cordeiro, Gauss M.
    Ortega, Edwin M. M.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (10) : 1211 - 1232
  • [9] R Development Core Team, 2011, R LANG ENV STAT COMP
  • [10] GUIDE TO BURR TYPE-XII DISTRIBUTIONS
    RODRIGUEZ, RN
    [J]. BIOMETRIKA, 1977, 64 (01) : 129 - 134