NON-SIMPLY CONNECTED MINIMAL PLANAR DOMAINS

被引:0
|
作者
Martin, Francisco [1 ]
Magdalena Rodriguez, M. [1 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
DIRICHLET PROBLEM; SURFACES; IMMERSIONS; EQUATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any non-simply connected planar domain can be properly and minimally embedded in H-2 x R. The examples that we produce are vertical bi-graphs, and they are obtained from the conjugate surface of a Jenkins-Serrin graph.
引用
收藏
页码:6167 / 6183
页数:17
相关论文
共 50 条
  • [21] Mod p decompositions of non-simply connected Lie groups
    Kishimoto, Daisuke
    Kono, Akira
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2008, 48 (01): : 1 - 5
  • [22] SCALAR ELECTRODYNAMICS IN A NON-SIMPLY CONNECTED SPACE-TIME
    TOMS, DJ
    PHYSICS LETTERS A, 1980, 77 (05) : 303 - 306
  • [23] A MODEL FOR THE SPACE OF FREE LOOPS IN A NON-SIMPLY CONNECTED SPACE
    HALPERIN, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 293 (01): : 79 - 81
  • [24] Fibrations in non-simply connected Calabi-Yau quotients
    Anderson, Lara B.
    Gray, James
    Hammack, Brian
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):
  • [25] Non-simply connected H-spaces with finiteness conditions
    Broto, C
    Crespo, JA
    Saumell, L
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2001, 130 : 475 - 488
  • [26] Construction of non-simply connected CMC surfaces via dressing
    Dorfmeister, J
    Haak, G
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (02) : 335 - 364
  • [27] Basic gerbe over non-simply connected compact groups
    Gawedzki, K
    Reis, N
    JOURNAL OF GEOMETRY AND PHYSICS, 2004, 50 (1-4) : 28 - 55
  • [28] D-brane charges on non-simply connected groups
    Gaberdiel, MR
    Gannon, T
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (04):
  • [29] Fibrations in non-simply connected Calabi-Yau quotients
    Lara B. Anderson
    James Gray
    Brian Hammack
    Journal of High Energy Physics, 2018
  • [30] ORBITAL DECOMPOSITIONS OF REPRESENTATIONS OF NON-SIMPLY CONNECTED NILPOTENT GROUPS
    LIPSMAN, RL
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1990, 42 (02) : 293 - 306