Is Predicting Software Security Bugs using Deep Learning Better than the Traditional Machine Learning Algorithms?

被引:11
|
作者
Clemente, Caesar Jude [1 ]
Jaafar, Fehmi [2 ]
Malik, Yasir [1 ]
机构
[1] Concordia Univ Edmonton, Dept Informat Syst, Edmonton, AB, Canada
[2] Concordia Univ Edmonton, Dept Informat Syst, Comp Res Inst Montreal, Montreal, PQ, Canada
来源
2018 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS 2018) | 2018年
关键词
Software Insecurity; Software Metrics; Bug Propensity Correlational Analysis; Predictive Models; Deep Learning; Feedforward Artificial Network;
D O I
10.1109/QRS.2018.00023
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Software insecurity is being identified as one of the leading causes of security breaches. In this paper, we revisited one of the strategies in solving software insecurity, which is the use of software quality metrics. We utilized a multilayer deep feedforward network in examining whether there is a combination of metrics that can predict the appearance of security-related bugs. We also applied the traditional machine learning algorithms such as decision tree, random forest, naive bayes, and support vector machines and compared the results with that of the Deep Learning technique. The results have successfully demonstrated that it was possible to develop an effective predictive model to forecast software insecurity based on the software metrics and using Deep Learning. All the models generated have shown an accuracy of more than sixty percent with Deep Learning leading the list. This finding proved that utilizing Deep Learning methods and a combination of software metrics can be tapped to create a better forecasting model thereby aiding software developers in predicting security bugs.
引用
收藏
页码:95 / 102
页数:8
相关论文
共 50 条
  • [31] Online Social Network Security: A Comparative Review Using Machine Learning and Deep Learning
    Kumar, Chanchal
    Bharati, Taran Singh
    Prakash, Shiv
    NEURAL PROCESSING LETTERS, 2021, 53 (01) : 843 - 861
  • [32] The Influence of Deep Learning Algorithms Factors in Software Fault Prediction
    Al Qasem, Osama
    Akour, Mohammed
    Alenezi, Mamdouh
    IEEE ACCESS, 2020, 8 (08): : 63945 - 63960
  • [33] Predicting E-commerce customer satisfaction: Traditional machine learning vs. deep learning approaches
    Zaghloul, Maha
    Barakat, Sherif
    Rezk, Amira
    JOURNAL OF RETAILING AND CONSUMER SERVICES, 2024, 79
  • [34] Predicting complications of diabetes mellitus using advanced machine learning algorithms
    Ljubic, Branimir
    Hai, Ameen Abdel
    Stanojevic, Marija
    Diaz, Wilson
    Polimac, Daniel
    Pavlovski, Martin
    Obradovic, Zoran
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2020, 27 (09) : 1343 - 1351
  • [35] Development and Application of Traditional Chinese Medicine Using AI Machine Learning and Deep Learning Strategies
    Pan, Danping
    Guo, Yilei
    Fan, Yongfu
    Wan, Haitong
    AMERICAN JOURNAL OF CHINESE MEDICINE, 2024, 52 (03): : 605 - 623
  • [36] Software quality prediction using machine learning
    Alaswad, Feisal
    Poovammal, E.
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 4714 - 4720
  • [37] Crop Seeds Classification Using Traditional Machine Learning and Deep Learning Techniques: A Comprehensive Survey
    Vipin Kumar
    Prem Shankar Singh Aydav
    Sonajharia Minz
    SN Computer Science, 5 (8)
  • [38] Prediction of gestational diabetes using deep learning and Bayesian optimization and traditional machine learning techniques
    Burçin Kurt
    Beril Gürlek
    Seda Keskin
    Sinem Özdemir
    Özlem Karadeniz
    İlknur Buçan Kırkbir
    Tuğba Kurt
    Serbülent Ünsal
    Cavit Kart
    Neslihan Baki
    Kemal Turhan
    Medical & Biological Engineering & Computing, 2023, 61 (7) : 1649 - 1660
  • [39] Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning
    Yan, Jielu
    Cai, Jianxiu
    Zhang, Bob
    Wang, Yapeng
    Wong, Derek F.
    Siu, Shirley W., I
    ANTIBIOTICS-BASEL, 2022, 11 (10):
  • [40] hERG-toxicity prediction using traditional machine learning and advanced deep learning techniques
    Ylipaa, Erik
    Chavan, Swapnil
    Bankestad, Maria
    Broberg, Johan
    Glinghammar, Bjorn
    Norinder, Ulf
    Cotgreave, Ian
    CURRENT RESEARCH IN TOXICOLOGY, 2023, 5