Is Predicting Software Security Bugs using Deep Learning Better than the Traditional Machine Learning Algorithms?

被引:11
|
作者
Clemente, Caesar Jude [1 ]
Jaafar, Fehmi [2 ]
Malik, Yasir [1 ]
机构
[1] Concordia Univ Edmonton, Dept Informat Syst, Edmonton, AB, Canada
[2] Concordia Univ Edmonton, Dept Informat Syst, Comp Res Inst Montreal, Montreal, PQ, Canada
关键词
Software Insecurity; Software Metrics; Bug Propensity Correlational Analysis; Predictive Models; Deep Learning; Feedforward Artificial Network;
D O I
10.1109/QRS.2018.00023
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Software insecurity is being identified as one of the leading causes of security breaches. In this paper, we revisited one of the strategies in solving software insecurity, which is the use of software quality metrics. We utilized a multilayer deep feedforward network in examining whether there is a combination of metrics that can predict the appearance of security-related bugs. We also applied the traditional machine learning algorithms such as decision tree, random forest, naive bayes, and support vector machines and compared the results with that of the Deep Learning technique. The results have successfully demonstrated that it was possible to develop an effective predictive model to forecast software insecurity based on the software metrics and using Deep Learning. All the models generated have shown an accuracy of more than sixty percent with Deep Learning leading the list. This finding proved that utilizing Deep Learning methods and a combination of software metrics can be tapped to create a better forecasting model thereby aiding software developers in predicting security bugs.
引用
收藏
页码:95 / 102
页数:8
相关论文
共 50 条
  • [1] Predicting groundwater level using traditional and deep machine learning algorithms
    Feng, Fan
    Ghorbani, Hamzeh
    Radwan, Ahmed E.
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2024, 12
  • [2] PREDICTING SOFTWARE CHANGE IN AN OPEN SOURCE SOFTWARE USING MACHINE LEARNING ALGORITHMS
    Malhotra, Ruchika
    Bansal, Ankita Jain
    INTERNATIONAL JOURNAL OF RELIABILITY QUALITY AND SAFETY ENGINEERING, 2013, 20 (06)
  • [3] Is deep learning better than traditional approaches in tag recommendation for software information sites?
    Zhou, Pingyi
    Liu, Jin
    Liu, Xiao
    Yang, Zijiang
    Grundy, John
    INFORMATION AND SOFTWARE TECHNOLOGY, 2019, 109 : 1 - 13
  • [4] Predicting Available Expert Developer for newly Reported Bugs using Machine learning Algorithms
    Sawarkar, Rucha
    Nagwani, Naresh Kumar
    Kumar, Sanjay
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [5] Predicting Apple Plant Diseases in Orchards Using Machine Learning and Deep Learning Algorithms
    Ahmed I.
    Yadav P.K.
    SN Computer Science, 5 (6)
  • [6] WHY DEEP LEARNING PERFORMS BETTER THAN CLASSICAL MACHINE LEARNING
    Picon, Artzai
    Alvarez-Gila, Aitor
    Irusta, Unai
    Echazarra, Jone
    DYNA, 2020, 95 (02): : 118 - 122
  • [7] A Review on the Effectiveness of Machine Learning and Deep Learning Algorithms for Cyber Security
    Geetha, R.
    Thilagam, T.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (04) : 2861 - 2879
  • [8] A Review on the Effectiveness of Machine Learning and Deep Learning Algorithms for Cyber Security
    R. Geetha
    T. Thilagam
    Archives of Computational Methods in Engineering, 2021, 28 : 2861 - 2879
  • [9] Traditional Machine and Deep Learning for Predicting Toxicity Endpoints
    Norinder, Ulf
    MOLECULES, 2023, 28 (01):
  • [10] Detection of Malicious Software by Analyzing Distinct Artifacts Using Machine Learning and Deep Learning Algorithms
    Ashik, Mathew
    Jyothish, A.
    Anandaram, S.
    Vinod, P.
    Mercaldo, Francesco
    Martinelli, Fabio
    Santone, Antonella
    ELECTRONICS, 2021, 10 (14)