Dirac-Point Shift by Carrier Injection Barrier in Graphene Field-Effect Transistor Operation at Room Temperature

被引:8
作者
Lee, Sungsik [1 ,2 ]
Nathan, Arokia [1 ]
Alexander-Webber, Jack [1 ]
Braeuninger-Weimer, Philipp [1 ]
Sagade, Abhay A. [1 ,3 ,4 ]
Lu, Haichang [1 ]
Hasko, David [1 ]
Robertson, John [1 ]
Hofmann, Stephan [1 ]
机构
[1] Univ Cambridge, Dept Engn, Elect Engn Div, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
[2] Pusan Natl Univ, Dept Elect Engn, Pusan 46241, South Korea
[3] SRM Inst Sci & Technol, SRM Res Inst, Kattankulathur 603203, Tamil Nadu, India
[4] SRM Inst Sci & Technol, Dept Phys, Kattankulathur 603203, Tamil Nadu, India
基金
英国工程与自然科学研究理事会;
关键词
graphene field effect transistor; Dirac point; Fermi velocity; asymmetric injection; intrinsic carrier mobility; short-range scattering; CONTACT RESISTANCE; REALIZATION; LIMIT;
D O I
10.1021/acsami.8b02294
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A positive shift in the Dirac point in graphene field-effect transistors was observed with Hall-effect measurements coupled with Kelvin-probe measurements at room temperature. This shift can be explained by the asymmetrical behavior of the contact resistance by virtue of the electron injection barrier at the source contact. As an outcome, an intrinsic resistance is given to allow a retrieval of an intrinsic carrier mobility found to be decreased with increasing gate bias, suggesting the dominance of short-range scattering in a single-layer graphene field-effect transistor. These results analytically correlate the field-effect parameters with intrinsic graphene properties.
引用
收藏
页码:10618 / 10621
页数:4
相关论文
共 25 条
[1]   Encapsulation of graphene transistors and vertical device integration by interface engineering with atomic layer deposited oxide [J].
Alexander-Webber, Jack A. ;
Sagade, Abhay A. ;
Aria, Adrianus I. ;
Van Veldhoven, Zenas A. ;
Braeuninger-Weimer, Philipp ;
Wang, Ruizhi ;
Cabrero-Vilatela, Andrea ;
Martin, Marie-Blandine ;
Sui, Jinggao ;
Connolly, Malcolm R. ;
Hofmann, Stephan .
2D MATERIALS, 2017, 4 (01)
[2]   Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point [J].
Blake, P. ;
Yang, R. ;
Morozov, S. V. ;
Schedin, F. ;
Ponomarenko, L. A. ;
Zhukov, A. A. ;
Nair, R. R. ;
Grigorieva, I. V. ;
Novoselov, K. S. ;
Geim, A. K. .
SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) :1068-1071
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Exploration of sensitivity limit for graphene magnetic sensors [J].
Chen, Bingyan ;
Huang, Le ;
Ma, Xiaomeng ;
Dong, Lijun ;
Zhang, Zhiyong ;
Peng, Lian-Mao .
CARBON, 2015, 94 :585-589
[5]   Device Perspective for Black Phosphorus Field-Effect Transistors: Contact Resistance, Ambipolar Behavior, and Scaling [J].
Du, Yuchen ;
Liu, Han ;
Deng, Yexin ;
Ye, Peide D. .
ACS NANO, 2014, 8 (10) :10035-10042
[6]  
Elias DC, 2011, NAT PHYS, V7, P701, DOI [10.1038/NPHYS2049, 10.1038/nphys2049]
[7]   Magnetic field driven metal-insulator phase transition in planar systems [J].
Gorbar, EV ;
Gusynin, VP ;
Miransky, VA ;
Shovkovy, IA .
PHYSICAL REVIEW B, 2002, 66 (04) :451081-4510822
[9]   Evidence of the role of contacts on the observed electron-hole asymmetry in graphene [J].
Huard, B. ;
Stander, N. ;
Sulpizio, J. A. ;
Goldhaber-Gordon, D. .
PHYSICAL REVIEW B, 2008, 78 (12)
[10]   Carrier transport in two-dimensional graphene layers [J].
Hwang, E. H. ;
Adam, S. ;
Das Sarma, S. .
PHYSICAL REVIEW LETTERS, 2007, 98 (18)