Reconstruction of 3D Cardiac MR Images from 2D Slices Using Directional Total Variation

被引:6
作者
Basty, Nicolas [1 ]
McClymont, Darryl [2 ]
Teh, Irvin [2 ,3 ]
Schneider, Juergen E. [2 ,3 ]
Grau, Vicente [1 ]
机构
[1] Univ Oxford, Inst Biomed Engn, Dept Engn Sci, Oxford, England
[2] Univ Oxford, Radcliffe Dept Med, Div Cardiovasc Med, Oxford, England
[3] Univ Leeds, Leeds Inst Cardiovasc & Metab Med, Leeds, W Yorkshire, England
来源
MOLECULAR IMAGING, RECONSTRUCTION AND ANALYSIS OF MOVING BODY ORGANS, AND STROKE IMAGING AND TREATMENT | 2017年 / 10555卷
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会; 英国惠康基金;
关键词
3D image reconstruction; Super-resolution; Cardiac MRI; Regularisation; Directional total variation; SUPERRESOLUTION;
D O I
10.1007/978-3-319-67564-0_13
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Cardiac MRI allows for the acquisition of high resolution images of the heart. Long acquisition times of MRI make it impractical to image the full heart in 3D at high resolution. As a result, multiple 2D images are commonly acquired with a slice thickness greater than the in-plane resolution. One way of achieving isotropic high-resolution images is to apply post-processing techniques such as super-resolution to produce high resolution images from low resolution input. We use shortaxis stacks as well as orthogonal long-axis views in a super-resolution framework, constraining the reconstruction using the contrast independent directional total variation algorithm to produce a high resolution 3D reconstruction with isotropic resolution. The 3D reconstruction retains the contrast of the short-axis stack, but incorporates the edge information from both the short-axis and the long-axis stacks. Results show improved reconstructions, with a segmentation voxel misclassification rate of 3.51% as opposed to 4.27% using linear interpolation.
引用
收藏
页码:127 / 135
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 2017, ARXIV170508302
[2]  
Bogaert J., 2005, CLIN CARDIAC MRI
[3]   Dictionary Learning and Time Sparsity for Dynamic MR Data Reconstruction [J].
Caballero, Jose ;
Price, Anthony N. ;
Rueckert, Daniel ;
Hajnal, Joseph V. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (04) :979-994
[4]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[5]   Multicontrast MRI Reconstruction with Structure-Guided Total Variation [J].
Ehrhardt, Matthias J. ;
Betcke, Marta M. .
SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (03) :1084-1106
[6]   MRI inter-slice reconstruction using super-resolution [J].
Greenspan, H ;
Oz, G ;
Kiryati, N ;
Peled, S .
MAGNETIC RESONANCE IMAGING, 2002, 20 (05) :437-446
[7]   MRI RESOLUTION ENHANCEMENT USING TOTAL VARIATION REGULARIZATION [J].
Joshi, Shantanu H. ;
Marquina, Antonio ;
Osher, Stanley J. ;
Dinov, Ivo ;
Van Horn, John D. ;
Toga, Arthur W. .
2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, :161-+
[8]  
Khmelinskii A, 2012, 2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), P1723, DOI 10.1109/ISBI.2012.6235912
[9]   Sparse MRI: The application of compressed sensing for rapid MR imaging [J].
Lustig, Michael ;
Donoho, David ;
Pauly, John M. .
MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (06) :1182-1195
[10]   Motion-Corrected, Super-Resolution Reconstruction for High-Resolution 3D Cardiac Cine MRI [J].
Odille, Freddy ;
Bustin, Aurelien ;
Chen, Bailiang ;
Vuissoz, Pierre-Andre ;
Felblinger, Jacques .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :435-442