Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2

被引:31
作者
Liske, Holly [1 ]
Qian, Xiang [2 ]
Anikeeva, Polina [3 ]
Deisseroth, Karl [4 ,5 ]
Delp, Scott [1 ,5 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Anesthesiol Perioperat & Pain Med, Stanford, CA 94305 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Stanford Univ, Dept Psychiat & Behav Sci, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
ELECTRICAL-CONDUCTION BLOCK; NERVE-CONDUCTION; IN-VIVO; FREQUENCY; ACTIVATION; STIMULATION; TEMPERATURE; CHANNELRHODOPSIN-2; SIMULATION; EXPRESSION;
D O I
10.1038/srep03110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The effect of electrical stimulation on neuronal membrane potential is frequency dependent. Low frequency electrical stimulation can evoke action potentials, whereas high frequency stimulation can inhibit action potential transmission. Optical stimulation of channelrhodopsin-2 (ChR2) expressed in neuronal membranes can also excite action potentials. However, it is unknown whether optical stimulation of ChR2-expressing neurons produces a transition from excitation to inhibition with increasing light pulse frequencies. Here we report optical inhibition of motor neuron and muscle activity in vivo in the cooled sciatic nerves of Thy1-ChR2-EYFP mice. We also demonstrate all-optical single-wavelength control of neuronal excitation and inhibition without co-expression of inhibitory and excitatory opsins. This all-optical system is free from stimulation-induced electrical artifacts and thus provides a new approach to investigate mechanisms of high frequency inhibition in neuronal circuits in vivo and in vitro.
引用
收藏
页数:7
相关论文
共 48 条
[21]   Informational lesions: optical perturbation of spike timing and neural synchrony via microbial opsin gene fusions [J].
Han, Xue ;
Qian, Xiaofeng ;
Stern, Patrick ;
Chuong, Amy S. ;
Boyden, Edward S. .
FRONTIERS IN MOLECULAR NEUROSCIENCE, 2009, 2
[22]   Suppression of axonal conduction by sinusoidal stimulation in rat hippocampus in vitro [J].
Jensen, A. L. ;
Durand, D. M. .
JOURNAL OF NEURAL ENGINEERING, 2007, 4 (02) :1-16
[23]   High frequency stimulation can block axonal conduction [J].
Jensen, Alicia L. ;
Durand, Dominique M. .
EXPERIMENTAL NEUROLOGY, 2009, 220 (01) :57-70
[24]  
Kandel E. R., 2000, PRINCIPLES NEURAL SC
[25]  
Kilgore Kevin L, 2006, Conf Proc IEEE Eng Med Biol Soc, V2006, P4971
[26]   Nerve conduction block utilising high-frequency alternating current [J].
Kilgore, KL ;
Bhadra, N .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2004, 42 (03) :394-406
[27]  
Kleinlogel S, 2011, NAT METHODS, V8, P1083, DOI [10.1038/NMETH.1766, 10.1038/nmeth.1766]
[28]   Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopin and green algae channelrhodopsin [J].
Li, X ;
Gutierrez, DV ;
Hanson, MG ;
Han, J ;
Mark, MD ;
Chiel, H ;
Hegemann, P ;
Landmesser, LT ;
Herlitze, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (49) :17816-17821
[29]   Optical inhibition of motor nerve and muscle activity in vivo [J].
Liske, Holly ;
Towne, Chris ;
Anikeeva, Polina ;
Zhao, Shengli ;
Feng, Guoping ;
Deisseroth, Karl ;
Delp, Scott .
MUSCLE & NERVE, 2013, 47 (06) :916-921
[30]   The Role of Slow Potassium Current in Nerve Conduction Block Induced by High-Frequency Biphasic Electrical Current [J].
Liu, Hailong ;
Roppolo, James R. ;
de Groat, William C. ;
Tai, Changfeng .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (01) :137-146