Quasiconformal Lipschitz maps, Sullivan's convex hull theorem and Brennan's conjecture

被引:18
作者
Bishop, CJ [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
来源
ARKIV FOR MATEMATIK | 2002年 / 40卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1007/BF02384499
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that proving the conjectured sharp constant in a theorem of Dennis Sullivan concerning convex sets in hyperbolic 3-space would imply the Brennan conjecture. We also prove that any conformal map f: D --> Omega can be factored as a K-quasiconformal self-map of the disk (with K independent of Omega) and a map g: D --> Omega with derivative bounded away from zero. In particular, there is always a Lipschitz homeomorphism from any simply connected Omega (with its internal path metric) to the unit disk.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 45 条
[31]   ON THE DISTORTION OF BOUNDARY SETS UNDER CONFORMAL-MAPPINGS [J].
MAKAROV, NG .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1985, 51 (SEP) :369-384
[32]   ON A CLASS OF EXCEPTIONAL SETS IN THE THEORY OF CONFORMAL-MAPPINGS [J].
MAKAROV, NG .
MATHEMATICS OF THE USSR-SBORNIK, 1991, 68 (01) :19-30
[33]   CONFORMAL MAPPING AND HAUSDORFF MEASURES [J].
MAKAROV, NG .
ARKIV FOR MATEMATIK, 1987, 25 (01) :41-89
[34]   POLYNOMIAL APPROXIMATION IN AQ(D) [J].
METZGER, TA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 37 (02) :468-470
[35]  
PFLUGER A, 1948, CR HEBD ACAD SCI, V227, P25
[36]   UNIFORMLY PERFECT SETS AND THE POINCARE METRIC [J].
POMMERENKE, C .
ARCHIV DER MATHEMATIK, 1979, 32 (02) :192-199
[37]   ON THE INTEGRAL MEANS OF THE DERIVATIVE OF A UNIVALENT FUNCTION .2. [J].
POMMERENKE, C .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1985, 17 (NOV) :565-570
[38]  
POMMERENKE C, 1985, J LOND MATH SOC, V32, P254
[39]  
Pommerenke Ch., 1992, Boundary behaviour of conformal maps, V299
[40]  
ROURKE C, 1987, ANAL GEOMETRIC ASPEC, P255