Quasiconformal Lipschitz maps, Sullivan's convex hull theorem and Brennan's conjecture

被引:18
作者
Bishop, CJ [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
来源
ARKIV FOR MATEMATIK | 2002年 / 40卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1007/BF02384499
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that proving the conjectured sharp constant in a theorem of Dennis Sullivan concerning convex sets in hyperbolic 3-space would imply the Brennan conjecture. We also prove that any conformal map f: D --> Omega can be factored as a K-quasiconformal self-map of the disk (with K independent of Omega) and a map g: D --> Omega with derivative bounded away from zero. In particular, there is always a Lipschitz homeomorphism from any simply connected Omega (with its internal path metric) to the unit disk.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 45 条
[1]  
[Anonymous], 1999, ST PETERSBOURG MATH
[2]  
[Anonymous], EXPLICIT CONSTANT SU
[3]   AREA DISTORTION OF QUASI-CONFORMAL MAPPINGS [J].
ASTALA, K .
ACTA MATHEMATICA, 1994, 173 (01) :37-60
[4]   Brennan's conjecture and the Mandelbrot set [J].
Baranski, K ;
Volberg, A ;
Zdunik, A .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1998, 1998 (12) :589-600
[5]   Coefficient estimates for negative powers of the derivative of univalent functions [J].
Bertilsson, D .
ARKIV FOR MATEMATIK, 1998, 36 (02) :255-273
[6]  
BERTILSSON D, 1999, THESIS ROYAL I TECHN
[7]  
BISHOP C. J., 1997, Lipa's legacy (New York, 1995), V211, P17, DOI 10.1090/conm/211/02813.[31]
[8]   Wiggly sets and limit sets [J].
Bishop, CJ ;
Jones, PW .
ARKIV FOR MATEMATIK, 1997, 35 (02) :201-224
[9]   Divergence groups have the Bowen property [J].
Bishop, CJ .
ANNALS OF MATHEMATICS, 2001, 154 (01) :205-217
[10]   Hausdorff dimension and Kleinian groups [J].
Bishop, CJ ;
Jones, PW .
ACTA MATHEMATICA, 1997, 179 (01) :1-39