BaCo0.7Fe0.22Y0.08O3-δ as an Active Oxygen Reduction Electrocatalyst for Low-Temperature Solid Oxide Fuel Cells below 600 °C

被引:78
作者
He, Wei [1 ]
Wu, Xuelian [2 ]
Yang, Guangming [3 ]
Shi, Huangang [4 ]
Dong, Feifei [1 ]
Ni, Meng [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Bldg & Real Estate, Bldg Energy Res Grp, Kowloon 999077, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Phys & Mat Sci, Tat Chee Ave, Kowloon 999077, Hong Kong, Peoples R China
[3] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, 5 Xin Mofan Rd, Nanjing 210009, Jiangsu, Peoples R China
[4] Nanjing Inst Technol, Sch Environm Engn, Nanjing 211167, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
CATHODE MATERIALS; HIGH-PERFORMANCE; MIXED CONDUCTOR; PEROVSKITE; MEMBRANES; ELECTRODE; BA0.5SR0.5CO0.8FE0.2O3-DELTA; OXIDATION; SOFCS;
D O I
10.1021/acsenergylett.6b00617
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid oxide fuel cells (SOFCs) offer great promise as sustainable energy conversion devices due to their high chemical-to electrical conversion efficiency, flexible fuel sources, and low pollutions. In recent years, much effort has been devoted to developing intermediate temperature SOFCs. Central to the devices is the availability of a highly effective electrocatalyst for oxygen reduction reaction with reduced temperature operation, especially below 600 degrees C. Here we present a novel B-site Y-doped perovskite-type oxide BaCo0.7Fe0.22Y0.08O3-delta (BCFY) with extremely low polarization resistances (e.g., 0.10 Omega cm(2) at 550 degrees C), which is ascribed to high cubic symmetry structure and fast oxygen kinetics. The superior electrocatalytic activity and stability enable BCFY to be a promising cathode candidate toward the application of reduced temperature SOFCs.
引用
收藏
页码:301 / 305
页数:5
相关论文
共 33 条
[1]   Electrode kinetics of porous mixed-conducting oxygen electrodes [J].
Adler, SB ;
Lane, JA ;
Steele, BCH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (11) :3554-3564
[2]   Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ mixed conductor [J].
Chen, Dengjie ;
Shao, Zongping .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (11) :6948-6956
[3]   An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0.95Sn0.05O3-δ [J].
Dong, Feifei ;
Ni, Meng ;
He, Wei ;
Chen, Yubo ;
Yang, Guangming ;
Chen, Dengjie ;
Shao, Zongping .
JOURNAL OF POWER SOURCES, 2016, 326 :459-465
[4]   A comparative study of Sm0.5Sr0.5MO3-δ (M = Co and Mn) as oxygen reduction electrodes for solid oxide fuel cells [J].
Dong, Feifei ;
Chen, Dengjie ;
Ran, Ran ;
Park, Heejung ;
Kwak, Chan ;
Shao, Zongping .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (05) :4377-4387
[5]   Readily processed protonic ceramic fuel cells with high performance at low temperatures [J].
Duan, Chuancheng ;
Tong, Jianhua ;
Shang, Meng ;
Nikodemski, Stefan ;
Sanders, Michael ;
Ricote, Sandrine ;
Almansoori, Ali ;
O'Hayre, Ryan .
SCIENCE, 2015, 349 (6254) :1321-1326
[6]   Metallic interconnects for solid oxide fuel cells [J].
Fergus, JW .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 397 (1-2) :271-283
[7]   Oxygen-permeable membranes of Ba1.0Co0.7Fe0.2Nb0.1O3-δ for preparation of synthesis gas from methane by partial oxidation [J].
Harada, Makoto ;
Domen, Kazunari ;
Hara, Michikazu ;
Tatsumi, Takashi .
CHEMISTRY LETTERS, 2006, 35 (08) :968-969
[8]   Facile Synthesis of Highly Active and Robust Ni-Mo Bimetallic Electrocatalyst for Hydrocarbon Oxidation in Solid Oxide Fuel Cells [J].
Hua, Bin ;
Li, Meng ;
Zhang, Ya-Qian ;
Chen, Jian ;
Sun, Yi-Fei ;
Yan, Ning ;
Li, Jian ;
Luo, Jing-Li .
ACS ENERGY LETTERS, 2016, 1 (01) :225-230
[9]   Hierarchically nanoporous La1.7Ca0.3CuO4-δ and La1.7Ca0.3NixCu1-xO4-δ (0.25 ≤ x ≤ 0.75) as potential cathode materials for IT-SOFCs [J].
Huang, Xiubing ;
Shin, Tae Ho ;
Zhou, Jun ;
Irvine, John T. S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (25) :13468-13475
[10]   Materials for Solid Oxide Fuel Cells [J].
Jacobson, Allan J. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :660-674