Physically informed artificial neural networks for atomistic modeling of materials

被引:240
作者
Pun, G. P. Purja [1 ]
Batra, R. [2 ]
Ramprasad, R. [2 ]
Mishin, Y. [1 ]
机构
[1] George Mason Univ, Dept Phys & Astron, MSN 3F3, Fairfax, VA 22030 USA
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
关键词
GENERALIZED GRADIENT APPROXIMATION; POTENTIAL-ENERGY SURFACES; EMBEDDED-ATOM METHOD; INTERATOMIC POTENTIALS; HYDROCARBONS; METALS; CHEMISTRY; SCIENCE;
D O I
10.1038/s41467-019-10343-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large-scale atomistic computer simulations of materials heavily rely on interatomic potentials predicting the energy and Newtonian forces on atoms. Traditional interatomic potentials are based on physical intuition but contain few adjustable parameters and are usually not accurate. The emerging machine-learning (ML) potentials achieve highly accurate interpolation within a large DFT database but, being purely mathematical constructions, suffer from poor transferability to unknown structures. We propose a new approach that can drastically improve the transferability of ML potentials by informing them of the physical nature of interatomic bonding. This is achieved by combining a rather general physics-based model (analytical bond-order potential) with a neural-network regression. This approach, called the physically informed neural network (PINN) potential, is demonstrated by developing a general-purpose PINN potential for Al. We suggest that the development of physics-based ML potentials is the most effective way forward in the field of atomistic simulations.
引用
收藏
页数:10
相关论文
共 71 条
[1]  
[Anonymous], 2005, Handbook of Materials Modeling, DOI [10.1007/978-1-4020-3286-8_23, DOI 10.1007/978-1-4020-3286-8_23]
[2]   Machine Learning a General-Purpose Interatomic Potential for Silicon [J].
Bartok, Albert P. ;
Kermode, James ;
Bernstein, Noam ;
Csanyi, Gabor .
PHYSICAL REVIEW X, 2018, 8 (04)
[3]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[5]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[6]   Perspective: Machine learning potentials for atomistic simulations [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)
[7]   Constructing high-dimensional neural network potentials: A tutorial review [J].
Behler, Joerg .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1032-1050
[8]   Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations [J].
Behler, Joerg .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (40) :17930-17955
[9]   Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (07)
[10]   Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential [J].
Behler, Joerg ;
Martonak, Roman ;
Donadio, Davide ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2008, 100 (18)