An asymptotic preserving numerical scheme for kinetic equations in the low Mach number limit

被引:42
|
作者
Klar, A [1 ]
机构
[1] Free Univ Berlin, FB Math & Informat, D-14195 Berlin, Germany
关键词
kinetic equations; asymptotic analysis; low Mach number limit; incompressible Navier-Stokes equations; Chorin projection; MAC grid; numerical methods for stiff equations;
D O I
10.1137/S0036142997321765
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical scheme for the nonstationary Boltzmann equation in the incompressible Navier-Stokes limit is developed. The scheme is induced by the asymptotic analysis of the Navier-Stokes limit for the Boltzmann equation. It works uniformly for all ranges of mean free paths. In the limit the scheme reduces to the Chorin projection method for the incompressible Navier-Stokes equation. Numerical results for different physical situations are shown and the uniform convergence of the scheme is established numerically.
引用
收藏
页码:1507 / 1527
页数:21
相关论文
共 50 条
  • [31] Low Mach number limit of inviscid Hookean elastodynamics
    Ju, Qiangchang
    Wang, Jiawei
    Xu, Xin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 68
  • [32] ON THE LOW MACH NUMBER LIMIT FOR THE COMPRESSIBLE EULER SYSTEM
    Feireisl, Eduard
    Klingenberg, Christian
    Markfelder, Simon
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (02) : 1496 - 1513
  • [33] Low Mach number limit for viscous compressible flows
    Danchin, R
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03): : 459 - 475
  • [34] Low-Mach-number and slenderness limit for elastic Cosserat rods and its numerical investigation
    Baus, Franziska
    Klara, Axel
    Marheineke, Nicole
    Wegener, Raimund
    ASYMPTOTIC ANALYSIS, 2020, 120 (1-2) : 103 - 121
  • [35] ASYMPTOTIC-PRESERVING SCHEME FOR THE RESOLUTION OF EVOLUTION EQUATIONS WITH STIFF TRANSPORT TERMS
    Fedele, Baptiste
    Negulescu, Claudia
    Possanner, Stefan
    MULTISCALE MODELING & SIMULATION, 2019, 17 (01): : 307 - 343
  • [36] An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field
    Degond, P.
    Deluzet, F.
    Sangam, A.
    Vignal, M. -H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (10) : 3540 - 3558
  • [37] AN ASYMPTOTIC PRESERVING SCHEME BASED ON A NEW FORMULATION FOR NLS IN THE SEMICLASSICAL LIMIT
    Besse, Christophe
    Carles, Remi
    Mehats, Florian
    MULTISCALE MODELING & SIMULATION, 2013, 11 (04): : 1228 - 1260
  • [38] An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit
    Bennoune, Mounir
    Lemou, Mohammed
    Mieussens, Luc
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2009, 21 (05) : 401 - 421
  • [39] Low Mach number limit of the compressible Navier-Stokes-Cattaneo equations with general initial data
    Wu, Fei
    Zhang, Shuxing
    Chen, Fangqi
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 73
  • [40] The combined quasineutral and low Mach number limit of Euler-Poisson equations coupled to a magnetic field
    Yang, Jianwei
    Hao, Huiyun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (17) : 10070 - 10080