An asymptotic preserving numerical scheme for kinetic equations in the low Mach number limit

被引:42
|
作者
Klar, A [1 ]
机构
[1] Free Univ Berlin, FB Math & Informat, D-14195 Berlin, Germany
关键词
kinetic equations; asymptotic analysis; low Mach number limit; incompressible Navier-Stokes equations; Chorin projection; MAC grid; numerical methods for stiff equations;
D O I
10.1137/S0036142997321765
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical scheme for the nonstationary Boltzmann equation in the incompressible Navier-Stokes limit is developed. The scheme is induced by the asymptotic analysis of the Navier-Stokes limit for the Boltzmann equation. It works uniformly for all ranges of mean free paths. In the limit the scheme reduces to the Chorin projection method for the incompressible Navier-Stokes equation. Numerical results for different physical situations are shown and the uniform convergence of the scheme is established numerically.
引用
收藏
页码:1507 / 1527
页数:21
相关论文
共 50 条
  • [1] STUDY OF A NEW ASYMPTOTIC PRESERVING SCHEME FOR THE EULER SYSTEM IN THE LOW MACH NUMBER LIMIT
    Dimarco, Giacomo
    Loubere, Raphael
    Vignal, Marie-Helene
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : A2099 - A2128
  • [2] A WEAKLY ASYMPTOTIC PRESERVING LOW MACH NUMBER SCHEME FOR THE EULER EQUATIONS OF GAS DYNAMICS
    Noelle, S.
    Bispen, G.
    Arun, K. R.
    Lukacova-Medvidova, M.
    Munz, C. -D.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (06): : B989 - B1024
  • [3] Asymptotic single and multiple scale expansions in the low Mach number limit
    Meister, A
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 60 (01) : 256 - 271
  • [4] ASYMPTOTIC-PRESERVING PROJECTIVE INTEGRATION SCHEMES FOR KINETIC EQUATIONS IN THE DIFFUSION LIMIT
    Lafitte, Pauline
    Samaey, Giovanni
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A579 - A602
  • [5] Low Mach number limit of the compressible Euler–Cattaneo–Maxwell equations
    Fucai Li
    Shuxing Zhang
    Zhipeng Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [6] Low Mach Number Limit of Solutions to the Stochastic Compressible Magnetohydrodynamic Equations
    Huaqiao Wang
    Journal of Dynamics and Differential Equations, 2023, 35 : 2413 - 2451
  • [7] ON THE LOW MACH NUMBER LIMIT FOR QUANTUM NAVIER-STOKES EQUATIONS
    Antonelli, Paolo
    Hientzsch, Lars Eric
    Marcati, Pierangelo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (06) : 6105 - 6139
  • [8] LOW MACH NUMBER LIMIT FOR THE COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN A PERIODIC DOMAIN
    Li, Fucai
    Mu, Yanmin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (04) : 1669 - 1705
  • [9] Low Mach Number Limit of Solutions to the Stochastic Compressible Magnetohydrodynamic Equations
    Wang, Huaqiao
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (03) : 2413 - 2451
  • [10] A SUCCESSIVE PENALTY-BASED ASYMPTOTIC-PRESERVING SCHEME FOR KINETIC EQUATIONS
    Yan, Bokai
    Jin, Shi
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : A150 - A172