New updates of incomplete LU factorizations and applications to large nonlinear systems

被引:12
作者
Bellavia, Stefania [1 ]
Morini, Benedetta [1 ]
Porcelli, Margherita [2 ]
机构
[1] Univ Florence, Dipartimento Ingn Ind, I-50134 Florence, Italy
[2] ISTI CNR, Ist Sci & Tecnol Informaz Alessandro Faedo, I-56124 Pisa, Italy
关键词
preconditioning; incomplete factorizations; factorization updates; inexact Newton-Krylov methods; matrix-free environment; NEWTON-KRYLOV METHODS; CONVERGENCE THEORY; LINEAR-SYSTEMS; DECAY-RATES; PRECONDITIONER; SEQUENCES; INVERSE;
D O I
10.1080/10556788.2012.762517
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we address the problem of preconditioning sequences of large sparse indefinite systems of linear equations and present two new strategies to construct approximate updates of factorized preconditioners. Both updates are based on the availability of an incomplete factorization for one matrix of the sequence and differ in the approximation of the so-called ideal update. For a general treatment, an incomplete LU (ILU) factorization is considered, but the proposed approaches apply to incomplete factorizations of symmetric matrices as well. The first strategy is an approximate diagonal update of the ILU factorization; the second strategy relies on banded approximations of the factors in the ideal update. The efficiency and reliability of the proposed preconditioners are shown in the solution of nonlinear systems of equations by preconditioned Newton-Krylov methods. Nearly matrix-free implementations of the updating strategy are provided, and numerical experiments are carried out on application problems.
引用
收藏
页码:321 / 340
页数:20
相关论文
共 32 条
[1]   CONVERGENCE OF A REGULARIZED EUCLIDEAN RESIDUAL ALGORITHM FOR NONLINEAR LEAST-SQUARES [J].
Bellavia, S. ;
Cartis, C. ;
Gould, N. I. M. ;
Morini, B. ;
Toint, Ph. L. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (01) :1-29
[2]   A globally convergent Newton-GMRES subspace method for systems of nonlinear equations [J].
Bellavia, S ;
Morini, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (03) :940-960
[3]   Globalization strategies for Newton-Krylov methods for stabilized FEM discretization of Navier-Stokes equations [J].
Bellavia, Stefania ;
Berrone, Stefano .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (02) :2317-2340
[4]   Subspace trust-region methods for large bound-constrained nonlinear equations [J].
Bellavia, Stefania ;
Morini, Benedetta .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) :1535-1555
[5]   A PRECONDITIONING FRAMEWORK FOR SEQUENCES OF DIAGONALLY MODIFIED LINEAR SYSTEMS ARISING IN OPTIMIZATION [J].
Bellavia, Stefania ;
De Simone, Valentina ;
Di Serafino, Daniela ;
Morini, Benedetta .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) :3280-3302
[6]   NONSYMMETRIC PRECONDITIONER UPDATES IN NEWTON-KRYLOV METHODS FOR NONLINEAR SYSTEMS [J].
Bellavia, Stefania ;
Bertaccini, Daniele ;
Morini, Benedetta .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) :2595-2619
[7]   EFFICIENT PRECONDITIONER UPDATES FOR SHIFTED LINEAR SYSTEMS [J].
Bellavia, Stefania ;
De Simone, Valentina ;
Di Serafino, Daniela ;
Morini, Benedetta .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (04) :1785-1809
[8]   A comparative study of sparse approximate inverse preconditioners [J].
Benzi, M ;
Tuma, M .
APPLIED NUMERICAL MATHEMATICS, 1999, 30 (2-3) :305-340
[9]   Bounds for the entries of matrix functions with applications to preconditioning [J].
Benzi, M ;
Golub, GH .
BIT, 1999, 39 (03) :417-438
[10]   A sparse approximate inverse preconditioner for nonsymmetric linear systems [J].
Benzi, M ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (03) :968-994