Multiplication modules over non-commutative rings

被引:16
|
作者
Tuganbaev, AA [1 ]
机构
[1] Technol Univ, Moscow Power Inst, Moscow, Russia
关键词
D O I
10.1070/SM2003v194n12ABEH000788
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that each submodule of a multiplication module over a regular ring is a multiplicative module. If A is a ring with commutative multiplication of right ideals, then each projective right ideal is a multiplicative module, and a finitely generated A-module M is a multiplicative module if and only if all its localizations with respect to maximal right ideals of A are cyclic modules over the corresponding localizations of A. In addition, several known results on multiplication modules over commutative rings are extended to modules over not necessarily commutative rings.
引用
收藏
页码:1837 / 1864
页数:28
相关论文
共 50 条
  • [1] Modules over non-commutative rings for an analysis of control systems
    Xia, XH
    Márquez-Martínez, LA
    Zagalak, P
    Moog, CH
    SYSTEM STRUCTURE AND CONTROL 2001, VOLS 1 AND 2, 2001, : 413 - 418
  • [2] On homological dimensions of simple modules over non-commutative rings
    Huang, ZY
    Cheng, FC
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (10) : 3259 - 3264
  • [4] MONOID ALGEBRAS OVER NON-COMMUTATIVE RINGS
    Cojuhari, E. P.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2007, 2 : 28 - 53
  • [5] Artinian-finitary groups over commutative rings and non-commutative rings
    Wehrfritz, BAF
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 70 : 325 - 340
  • [6] On Weakly Prime and Weakly 2-absorbing Modules over Non-commutative Rings
    Groenewald, Nico J.
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (01): : 33 - 48
  • [7] Generic freeness of modules over non-commutative domains
    Paran, Elad
    Vo, Thieu N.
    JOURNAL OF ALGEBRA, 2024, 641 : 735 - 753
  • [8] Finitary automorphism groups over non-commutative rings
    Wehrfritz, BAF
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 : 611 - 623
  • [9] Graded Prime Submodules over Non-Commutative Rings
    Abu-Dawwas R.
    Bataineh M.
    Al-Muanger M.
    Vietnam Journal of Mathematics, 2018, 46 (3) : 681 - 692
  • [10] Matrices over non-commutative rings as sums of powers
    Katre, S. A.
    Krishnamurthi, Deepa
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (05): : 824 - 829