Thermal Runaway of Lithium-Ion Batteries Triggered by Electromagnetic Interference

被引:9
|
作者
Dubois, Eric Ravindranath [1 ]
Kherbouchi, Hocine [1 ]
Bosson, Joel [2 ]
机构
[1] Thales Avion Elect Syst, F-78400 Chatou, France
[2] Thales LAS France, F-78990 Elancourt, France
关键词
Lithium-ion batteries; Electrodes; Radio frequency; Power cables; Electromagnetics; Capacitors; Capacitor; lithium-ion batteries; thermal runaway; SHORT-CIRCUIT; ISSUES; FIRE;
D O I
10.1109/TEMC.2020.2966743
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lithium-ion batteries are used in many modern systems where several thermal runaway accidents are reported. Apart from mechanical abuse, the main cause of accidents are high current densities due to some internal short circuit, caused by overcharging or over-discharging. In this article, it is shown that the high current densities, far above the safe threshold, can also be caused by electromagnetic interference. As a battery is very comparable to a capacitor, the combination with interconnecting wires makes it a resonant, or a, unforeseen tuned, circuit. Experiments with electrolytic capacitors have been performed to confirm this effect, followed by experiments with lithium-ion battery cells. Then, high-frequency currents using the standard bulk current injection test setups, have been injected at the resonance frequency until thermal runaway that induces vent out occurs.
引用
收藏
页码:2096 / 2100
页数:5
相关论文
共 50 条
  • [1] MODELING THERMAL RUNAWAY IN PRISMATIC LITHIUM-ION BATTERIES
    Khan, Shehzad
    Anwar, Sohail
    Casa, Jairo
    Hasnain, Muhammad
    Ahmed, Hossain
    Sezer, Hayri
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 10, 2023,
  • [2] Applied method to model the thermal runaway of lithium-ion batteries
    Lalinde, Inaki
    Berrueta, Alberto
    Sanchis, Pablo
    Ursua, Alfredo
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,
  • [3] Advances in Prevention of Thermal Runaway in Lithium-Ion Batteries
    McKerracher, Rachel D.
    Guzman-Guemez, Jorge
    Wills, Richard G. A.
    Sharkh, Suleiman M.
    Kramer, Denis
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (05):
  • [4] Monitoring and diagnostic approaches for thermal runaway in lithium-ion batteries
    Xu, Zengheng
    Zhou, Xiaoyan
    Fu, Jialong
    Li, Qiutong
    Tan, Zejie
    Fan, Xiaopeng
    Wang, Zhiming
    Tian, Bing
    Guo, Xin
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (33): : 4501 - 4516
  • [5] Modeling thermal runaway of lithium-ion batteries with a venting process
    He, C. X.
    Yue, Q. L.
    Chen, Q.
    Zhao, T. S.
    APPLIED ENERGY, 2022, 327
  • [6] Modelling and simulation of thermal runaway phenomenon in lithium-ion batteries
    Alshammari, Ali
    Al-Obaidi, Mudhar
    Staggs, John
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2024, 19 (02)
  • [7] Study on the thermal runaway characteristics and debris of lithium-ion batteries under overheating, overcharge, and extrusion
    Qi, Chuang
    Liu, Zhenyan
    Lin, Chunjing
    Hu, Yuanzhi
    Yan, Tao
    Zhou, Yapeng
    Chen, Bin
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [8] A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries
    Liao, Zhenghai
    Zhang, Shen
    Li, Kang
    Zhang, Guoqiang
    Habetler, Thomas G.
    JOURNAL OF POWER SOURCES, 2019, 436
  • [9] Characteristics of particle emissions from lithium-ion batteries during thermal runaway: A review
    Li, Weifeng
    Xue, Yao
    Feng, Xinbo
    Rao, Shun
    Zhang, Tianyao
    Gao, Zhenhai
    Guo, Yueming
    Zhou, Haoyu
    Zhao, Haoyuan
    Song, Zelai
    Shi, Jiawei
    Wang, Hewu
    Wang, Deping
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [10] Research on the Inhibition of Thermal Runaway in Power Lithium-Ion Batteries by Modified Vermiculite Powder
    Shi, Yaqin
    Xing, Zhixiang
    Liu, Yecheng
    Peng, Ming
    Qi, Longtai
    FIRE TECHNOLOGY, 2025,