Deep Regression Neural Network for Industrial Surface Defect Detection

被引:33
作者
He, Zhiquan [1 ,2 ,3 ]
Liu, Qifan [1 ]
机构
[1] Shenzhen Univ, Shenzhen Key Lab Media Secur, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Guangdong Multimedia Informat Serv Engn Technol R, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
基金
中国国家自然科学基金;
关键词
Image segmentation; Machine learning; Neural networks; Data models; Feature extraction; Object detection; Image resolution; Deep convolutional neural networks; regression; surface defect detection; RECOGNITION;
D O I
10.1109/ACCESS.2020.2975030
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Industrial product surface defect detection is very important to guarantee high product quality and production efficiency. In this work, we propose a regression and classification based framework for generic industrial defect detection. Specifically, the framework consists of four modules: deep regression based detection model, pixel-level false positive reduction, connected component analysis and deep network for defect type classification. To train the detection model, we propose a high performance deep network structure and an algorithm to generate label data to capture the defect severity information from data annotation. We have tested the method on two public benchmark datasets, AigleRN and DAGM2007, and an in-house capacitor image dataset. The results have shown that our method can achieve the state-of-the-art performance in terms of detection accuracy and efficiency.
引用
收藏
页码:35583 / 35591
页数:9
相关论文
共 52 条
  • [31] Pauly L., 2017, ISARC 2017 P 34 INT, P479, DOI [10.22260/ISARC2017/0066, DOI 10.22260/ISARC2017/0066]
  • [32] A High-Efficiency Fully Convolutional Networks for Pixel-Wise Surface Defect Detection
    Qiu, Lingteng
    Wu, Xiaojun
    Yu, Zhiyang
    [J]. IEEE ACCESS, 2019, 7 : 15884 - 15893
  • [33] You Only Look Once: Unified, Real-Time Object Detection
    Redmon, Joseph
    Divvala, Santosh
    Girshick, Ross
    Farhadi, Ali
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 779 - 788
  • [34] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
    Ren, Shaoqing
    He, Kaiming
    Girshick, Ross
    Sun, Jian
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) : 1137 - 1149
  • [35] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [36] Saunders C., 2002, Computer ence, V1, P1, DOI [10.1007/978-3-642-27733-7299-3, DOI 10.1007/978-3-642-27733-7299-3]
  • [37] Shang LD, 2018, INT CONF ADV COMMUN, P45, DOI 10.23919/ICACT.2018.8323642
  • [38] Fully Convolutional Networks for Semantic Segmentation
    Shelhamer, Evan
    Long, Jonathan
    Darrell, Trevor
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (04) : 640 - 651
  • [39] Automatic Road Crack Detection Using Random Structured Forests
    Shi, Yong
    Cui, Limeng
    Qi, Zhiquan
    Meng, Fan
    Chen, Zhensong
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2016, 17 (12) : 3434 - 3445
  • [40] Deep Faster R-CNN-based automated detection and localization of multiple types of damage
    Suh, Gahyun
    Cha, Young-Jin
    [J]. SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2018, 2018, 10598