Adaptive Second-Order Sliding Mode Algorithm-Based Modified Function Projective Synchronization of Uncertain Hyperchaotic Systems

被引:1
作者
Tran, Xuan-Toa [1 ,2 ]
Kwon, Cheolhyeon [1 ]
Oh, Hyondong [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Mech Aerosp & Nucl Engn, Ulsan 44919, South Korea
[2] Nguyen Tat Thanh Univ, NTT Hitech Inst, Ho Chi Minh City 70000, Vietnam
基金
新加坡国家研究基金会;
关键词
Synchronization; Adaptive systems; Manifolds; Convergence; Uncertainty; Upper bound; Robustness; Hyperchaotic synchronization; terminal sliding mode control; uncertainty; finite-time control; FINITE-TIME SYNCHRONIZATION; DIFFERENT CHAOTIC SYSTEMS; STABILITY; DESIGN; SCHEME;
D O I
10.1109/ACCESS.2020.3016650
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article proposes a synchronization technique for uncertain hyperchaotic systems in the modified function projective manner using integral fast terminal sliding mode (I-FTSM) and adaptive second-order sliding mode algorithm. The new I-FTSM manifolds are introduced with the aim of having the fast convergence speed. The proposed continuous controller not only results in the robustness and high-accuracy synchronization in the presence of unknown external disturbances and/or model uncertainties but also helps alleviating the chattering effect significantly. Numerical simulation results are provided to illustrate the effectiveness of the proposed control design technique and verify the theoretical analysis.
引用
收藏
页码:149952 / 149962
页数:11
相关论文
共 52 条
[21]   Projective synchronization of a new hyperchaotic Lorenz system [J].
Jia, Qiang .
PHYSICS LETTERS A, 2007, 370 (01) :40-45
[22]   A note on chaotic secure communication systems [J].
Jiang, ZP .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2002, 49 (01) :92-96
[23]  
Khalil H. K., 2002, NONLINEAR SYSTEMS, V3
[24]   Adaptive Second-Order Sliding Mode Observer-Based Fault Reconstruction for PEM Fuel Cell Air-Feed System [J].
Laghrouche, Salah ;
Liu, Jianxing ;
Ahmed, Fayez Shakil ;
Harmouche, Mohamed ;
Wack, Maxime .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2015, 23 (03) :1098-1109
[25]   Continuous Twisting Algorithm for Third-Order Systems [J].
Mendoza-Avila, Jesus ;
Moreno, Jaime A. ;
Fridman, Leonid M. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (07) :2814-2825
[26]   Synchronization of A Class of Uncertain Chaotic Systems with Lipschitz Nonlinearities Using State-Feedback Control Design: A Matrix Inequality Approach [J].
Mobayen, Saleh ;
Tchier, Fairouz .
ASIAN JOURNAL OF CONTROL, 2018, 20 (01) :71-85
[27]   Composite nonlinear feedback control technique for master/slave synchronization of nonlinear systems [J].
Mobayen, Saleh ;
Tchier, Fairouz .
NONLINEAR DYNAMICS, 2017, 87 (03) :1731-1747
[28]   Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems [J].
Modiri, Arshia ;
Mobayen, Saleh .
ISA TRANSACTIONS, 2020, 105 :33-50
[29]  
Moreno JA, 2008, IEEE DECIS CONTR P, P2856, DOI 10.1109/CDC.2008.4739356
[30]   Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques [J].
Njah, A. N. .
NONLINEAR DYNAMICS, 2010, 61 (1-2) :1-9