Self-adjoint extensions of Dirac operators with Coulomb type singularity

被引:20
作者
Arrizabalaga, Naiara [1 ]
Duoandikoetxea, Javier [1 ]
Vega, Luis [1 ]
机构
[1] UPV, EHU, Dept Matemat, Bilbao 48080, Spain
关键词
CUT-OFF POTENTIALS; ESSENTIAL SELFADJOINTNESS; ESSENTIAL SPECTRUM; INEQUALITIES; THEOREM;
D O I
10.1063/1.4798804
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we construct self-adjoint extensions of the Dirac operator associated to Hermitian matrix potentials with Coulomb decay and prove that the domain is maximal. The result is obtained by means of a Hardy-Dirac type inequality. In particular, we can work with some electromagnetic potentials such that both, the electric potential and the magnetic one, have Coulomb type singularity. (C) 2013 American Institute of Physics.
引用
收藏
页数:20
相关论文
共 20 条
[1]  
[Anonymous], RIMS KOKYUROKU
[3]  
ARAI M, 1982, PUBL RIMS KYOTO U, V18, P973
[5]   An analytical proof of Hardy-like inequalities related to the Dirac operator [J].
Dolbeault, J ;
Esteban, MJ ;
Loss, M ;
Vega, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 216 (01) :1-21
[6]   Hardy-type estimates for Dirac operators [J].
Dolbeault, Jean ;
Esteban, Maria J. ;
Duoandikoetxea, Javier ;
Vega, Luis .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2007, 40 (06) :885-900
[7]  
Dolbeault J, 2007, ANN HENRI POINCARE, V8, P749, DOI [10.1007/s00023-006-0321-5, 10.1007/s00023-006-0321-0]
[8]   Some weighted Gagliardo-Nirenberg inequalities and applications [J].
Duoandikoetxea, Javier ;
Vega, Luis .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) :2795-2802
[9]   Self-adjointness for Dirac operators via Hardy-Dirac inequalities [J].
Esteban, Maria J. ;
Loss, M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (11)
[10]  
Kato T., 1980, PERTURBATION THEORY