Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L.

被引:140
|
作者
Hasanuzzaman, M. [1 ]
Nahar, K. [2 ]
Anee, T. I. [1 ]
Khan, M. I. R. [3 ]
Fujita, M. [4 ]
机构
[1] Sher E Bangla Agr Univ, Fac Agr, Dept Agron, Dhaka 1207, Bangladesh
[2] Sher E Bangla Agr Univ, Fac Agr, Dept Agr Bot, Dhaka 1207, Bangladesh
[3] Int Rice Res Inst, Syst Physiol, Strateg Innovat Platform, Los Banos, Philippines
[4] Kagawa Univ, Lab Plant Stress Responses, Dept Appl Biol Sci, Fac Agr, Miki, Kagawa 7610795, Japan
关键词
Antioxidants; AsA-GSH pathway; Brassica; Drought; Glyoxylase system; Stress tolerance; METHYLGLYOXAL DETOXIFICATION SYSTEM; PHOTOSYNTHETIC GAS-EXCHANGE; INDUCED OXIDATIVE STRESS; HYDROGEN-PEROXIDE; HIGH-TEMPERATURE; SALT STRESS; WHEAT; CULTIVARS; RESPONSES; PLANTS;
D O I
10.1016/j.sajb.2017.12.006
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought stress is considered as a major constraint for the production of crops around the world; therefore we need some mechanistic strategies to cope drought stress adverse effects. Silicon (Si) plays a vital role in major physiological, metabolic, and/or functional roles in plants facing abiotic stress conditions as an essential mineral nutrient. In the current study, we investigated Si-induced physiological role in plants exposed to moderate and short-term drought exposure (induced by polyethylene glycol, PEG). Exogenous application of Si (1 mM SiO2) significantly induced tolerance under short term drought (10 and 20% PEG) exposure. Silicon protects photosynthetic pigments and decreased oxidative stress (decreased lipid peroxidation and H2O2 accumulation) due to the increase in ascorbate (AsA) and glutathione (GSH) pool; activity of antioxidant enzymes viz. catalase (CAT), ascorbate peroxidase (APX), glutathione S-transferase (GST), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and, enzymes of glyoxalase systems, leaf relative water content (RWC) and the content of proline in Brassica napus grown under both levels of drought (moderate; 10% and severe 20%), however, the effect was more promising under moderate stress. Here, we concluded that exogenous application of Si under short-term drought significantly improved antioxidants enzymes, AsA-GSH pool, glyoxalase systems and proline in drought-stressed plants was associated with the protective role and maintained the redox status of the plants. (c) 2017 SAAB. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 57
页数:8
相关论文
共 50 条
  • [21] Exogenously applied hexaconazole ameliorates salinity stress by inducing an antioxidant defense system in Brassica napus L. plants
    Akbari, Gholam Ali
    Hojati, Mostafa
    Modarres-Sanavy, Seyed Ali Mohammad
    Ghanati, Faezeh
    PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, 2011, 100 (03) : 244 - 250
  • [22] Gradual Exposure to Salinity Improves Tolerance to Salt Stress in Rapeseed (Brassica napus L.)
    Santangeli, Michael
    Capo, Concetta
    Beninati, Simone
    Pietrini, Fabrizio
    Forni, Cinzia
    WATER, 2019, 11 (08)
  • [23] Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems
    Al Mahmud, Jubayer
    Hasanuzzaman, Mirza
    Nahar, Kamrun
    Bhuyan, M. H. M. Borhannuddin
    Fujita, Masayuki
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2018, 147 : 990 - 1001
  • [24] 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress
    Xiong, Jun-Lan
    Wang, Hang-Chao
    Tan, Xiao-Yu
    Zhang, Chun-Lei
    Naeem, Muhammad Shahbaz
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 124 : 88 - 99
  • [25] Synergistic effects of drought and ascorbic acid on growth, mineral nutrients and oxidative defense system in canola (Brassica napus L.) plants
    Shafiq, Sidra
    Akram, Nudrat Aisha
    Ashraf, Muhammad
    Arshad, Amara
    ACTA PHYSIOLOGIAE PLANTARUM, 2014, 36 (06) : 1539 - 1553
  • [26] EDTA reduces cadmium toxicity in mustard (Brassica juncea L.) by enhancing metal chelation, antioxidant defense and glyoxalase systems
    Al Mahmud, Jubayer
    Hasanuzzaman, Mirza
    Nahar, Kamrun
    Rahman, Anisur
    Fujita, Masayuki
    ACTA AGROBOTANICA, 2019, 72 (02)
  • [27] Silicon-Mediated Improvement in Drought and Salinity Stress Tolerance of Black Gram (Vigna mungo L.) by Modulating Growth, Physiological, Biochemical, and Root Attributes
    Ahmad, Waheed
    Waraich, Ejaz Ahmad
    Haider, Arslan
    Mahmood, Nasir
    Ramzan, Tahrim
    Alamri, Saud
    Siddiqui, Manzer H.
    Akhtar, Mohd. Sayeed
    ACS OMEGA, 2024, 9 (35): : 37231 - 37242
  • [28] Methyl Jasmonate Regulates Antioxidant Defense and Suppresses Arsenic Uptake in Brassica napus L.
    Farooq, Muhammad A.
    Gill, Rafaqat A.
    Islam, Faisal
    Ali, Basharat
    Liu, Hongbo
    Xu, Jianxiang
    He, Shuiping
    Zhou, Weijun
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [29] SILICON-MEDIATED IMPROVEMENT IN TOLERANCE OF ECONOMICALLY IMPORTANT CROPS UNDER DROUGHT STRESS
    Pang, Z.
    Tayyab, M.
    Islam, W.
    Tarin, M. W. K.
    Sarfaraz, R.
    Naveed, H.
    Zaman, S.
    Zhang, B.
    Yuan, Z.
    Zhang, H.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2019, 17 (03): : 6151 - 6170
  • [30] Silicon-Mediated Arsenic Tolerance: Restriction of Arsenic Uptake and Modulation of Antioxidant Defense System in Rice Seedlings
    Siddiqui, Khadija
    Babar, Maria
    Jamail, Ishrat
    Musharraf, Ghulam
    Galani, Saddia
    JOURNAL OF PLANT GROWTH REGULATION, 2025, 44 (02) : 674 - 685