Predicting Drug-target Interaction via Wide and Deep Learning

被引:10
|
作者
Du, Yingyi [1 ]
Wang, Jihong [1 ]
Wang, Xiaodan [2 ]
Chen, Jiyun [1 ]
Chang, Huiyou [1 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China
[2] Guangdong Pharmaceut Univ, Sch Pharmaceut Chem & Chem Engn, Zhongshan, Peoples R China
来源
PROCEEDINGS OF 2018 6TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (ICBCB 2018) | 2018年
关键词
drug-target interaction prediction; wide and deep model; machine learning; deep learning; DrugBank;
D O I
10.1145/3194480.3194491
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying the interactions of approval drugs and targets is essential in medicine field, which can facilitate the discovery and reposition of drugs. Due to the tendency towards machine learning, a growing number of computational methods have been applied to the prediction of the drug-target interactions (DTIs). In this paper, we propose a wide and deep learning framework combining a generalized linear model and a deep feed-forward neural network to address the challenge of predicting the DTIs precisely. The proposed method is a joint training of the wide and deep models, which is implemented by feeding the weighted sum of the results obtained from the wide and deep models into a logistic loss function using mini-batch stochastic gradient descent. The results of this experiment indicate that the proposed method increases the accuracy of prediction for DTIs, which is superior to other methods.
引用
收藏
页码:128 / 132
页数:5
相关论文
共 50 条
  • [41] Similarity-based machine learning methods for predicting drug-target interactions: a brief review
    Ding, Hao
    Takigawa, Ichigaku
    Mamitsuka, Hiroshi
    Zhu, Shanfeng
    BRIEFINGS IN BIOINFORMATICS, 2014, 15 (05) : 734 - 747
  • [42] A Heterogeneous Cross Contrastive Learning Method for Drug-Target Interaction Prediction
    Wang, Qi
    Gu, Jiachang
    Zhang, Jiahao
    Liu, Mingming
    Jin, Xu
    Xie, Maoqiang
    ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT I, ICIC 2024, 2024, 14881 : 183 - 194
  • [43] HiGraphDTI: Hierarchical Graph Representation Learning for Drug-Target Interaction Prediction
    Liu, Bin
    Wu, Siqi
    Wang, Jin
    Deng, Xin
    Zhou, Ao
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES-RESEARCH TRACK, PT VI, ECML PKDD 2024, 2024, 14946 : 354 - 370
  • [44] UnbiasedDTI: Mitigating Real-World Bias of Drug-Target Interaction Prediction by Using Deep Ensemble-Balanced Learning
    Tayebi, Aida
    Yousefi, Niloofar
    Yazdani-Jahromi, Mehdi
    Kolanthai, Elayaraja
    Neal, Craig J.
    Seal, Sudipta
    Garibay, Ozlem Ozmen
    MOLECULES, 2022, 27 (09):
  • [45] A review of machine learning-based methods for predicting drug-target interactions
    Shi, Wen
    Yang, Hong
    Xie, Linhai
    Yin, Xiao-Xia
    Zhang, Yanchun
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2024, 12 (01)
  • [46] GSRF-DTI: a framework for drug-target interaction prediction based on a drug-target pair network and representation learning on a large graph
    Zhu, Yongdi
    Ning, Chunhui
    Zhang, Naiqian
    Wang, Mingyi
    Zhang, Yusen
    BMC BIOLOGY, 2024, 22 (01)
  • [47] GraphDTI: A robust deep learning predictor of drug-target interactions from multiple heterogeneous data
    Liu, Guannan
    Singha, Manali
    Pu, Limeng
    Neupane, Prasanga
    Feinstein, Joseph
    Wu, Hsiao-Chun
    Ramanujam, J.
    Brylinski, Michal
    JOURNAL OF CHEMINFORMATICS, 2021, 13 (01)
  • [48] MOKPE: drug-target interaction prediction via manifold optimization based kernel preserving embedding
    Binatli, Oguz C.
    Gonen, Mehmet
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [49] GraphDTI: A robust deep learning predictor of drug-target interactions from multiple heterogeneous data
    Guannan Liu
    Manali Singha
    Limeng Pu
    Prasanga Neupane
    Joseph Feinstein
    Hsiao-Chun Wu
    J. Ramanujam
    Michal Brylinski
    Journal of Cheminformatics, 13
  • [50] BCM-DTI: A fragment-oriented method for drug-target interaction prediction using deep learning
    Dou, Liang
    Zhang, Zhen
    Liu, Dan
    Qian, Ying
    Zhang, Qian
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2023, 104