Predicting Drug-target Interaction via Wide and Deep Learning
被引:10
|
作者:
Du, Yingyi
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China
Du, Yingyi
[1
]
Wang, Jihong
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China
Wang, Jihong
[1
]
Wang, Xiaodan
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Pharmaceut Univ, Sch Pharmaceut Chem & Chem Engn, Zhongshan, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China
Wang, Xiaodan
[2
]
Chen, Jiyun
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China
Chen, Jiyun
[1
]
Chang, Huiyou
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China
Chang, Huiyou
[1
]
机构:
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China
[2] Guangdong Pharmaceut Univ, Sch Pharmaceut Chem & Chem Engn, Zhongshan, Peoples R China
来源:
PROCEEDINGS OF 2018 6TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (ICBCB 2018)
|
2018年
关键词:
drug-target interaction prediction;
wide and deep model;
machine learning;
deep learning;
DrugBank;
D O I:
10.1145/3194480.3194491
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Identifying the interactions of approval drugs and targets is essential in medicine field, which can facilitate the discovery and reposition of drugs. Due to the tendency towards machine learning, a growing number of computational methods have been applied to the prediction of the drug-target interactions (DTIs). In this paper, we propose a wide and deep learning framework combining a generalized linear model and a deep feed-forward neural network to address the challenge of predicting the DTIs precisely. The proposed method is a joint training of the wide and deep models, which is implemented by feeding the weighted sum of the results obtained from the wide and deep models into a logistic loss function using mini-batch stochastic gradient descent. The results of this experiment indicate that the proposed method increases the accuracy of prediction for DTIs, which is superior to other methods.
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China
Wang, Yingjie
Chang, Huiyou
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China
Chang, Huiyou
Wang, Jihong
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China
Wang, Jihong
Shi, Yue
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China
Shi, Yue
2018 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND BIOINFORMATICS (ICBEB 2018),
2018,
: 14
-
18
机构:
Dali Univ, Coll Math & Comp Sci, Dali 671003, Peoples R ChinaDali Univ, Coll Math & Comp Sci, Dali 671003, Peoples R China
Zeng, Xin
Su, Guang-Peng
论文数: 0引用数: 0
h-index: 0
机构:
Dali Univ, Coll Math & Comp Sci, Dali 671003, Peoples R ChinaDali Univ, Coll Math & Comp Sci, Dali 671003, Peoples R China
Su, Guang-Peng
Li, Shu-Juan
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Inst Endem Dis Control & Prevent, Dali 671000, Peoples R ChinaDali Univ, Coll Math & Comp Sci, Dali 671003, Peoples R China
Li, Shu-Juan
Lv, Shuang-Qing
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ Appl Sci, Inst Surveying & Informat Engn West, Dali 671000, Peoples R ChinaDali Univ, Coll Math & Comp Sci, Dali 671003, Peoples R China
Lv, Shuang-Qing
Wen, Meng-Liang
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, State Key Lab Conservat & Utilizat Bioresources Yu, Kunming 650000, Peoples R ChinaDali Univ, Coll Math & Comp Sci, Dali 671003, Peoples R China
Wen, Meng-Liang
Li, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Dali Univ, Coll Math & Comp Sci, Dali 671003, Peoples R ChinaDali Univ, Coll Math & Comp Sci, Dali 671003, Peoples R China