Predicting Drug-target Interaction via Wide and Deep Learning

被引:10
|
作者
Du, Yingyi [1 ]
Wang, Jihong [1 ]
Wang, Xiaodan [2 ]
Chen, Jiyun [1 ]
Chang, Huiyou [1 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China
[2] Guangdong Pharmaceut Univ, Sch Pharmaceut Chem & Chem Engn, Zhongshan, Peoples R China
关键词
drug-target interaction prediction; wide and deep model; machine learning; deep learning; DrugBank;
D O I
10.1145/3194480.3194491
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying the interactions of approval drugs and targets is essential in medicine field, which can facilitate the discovery and reposition of drugs. Due to the tendency towards machine learning, a growing number of computational methods have been applied to the prediction of the drug-target interactions (DTIs). In this paper, we propose a wide and deep learning framework combining a generalized linear model and a deep feed-forward neural network to address the challenge of predicting the DTIs precisely. The proposed method is a joint training of the wide and deep models, which is implemented by feeding the weighted sum of the results obtained from the wide and deep models into a logistic loss function using mini-batch stochastic gradient descent. The results of this experiment indicate that the proposed method increases the accuracy of prediction for DTIs, which is superior to other methods.
引用
收藏
页码:128 / 132
页数:5
相关论文
共 50 条
  • [31] Application of Machine Learning for Drug-Target Interaction Prediction
    Xu, Lei
    Ru, Xiaoqing
    Song, Rong
    FRONTIERS IN GENETICS, 2021, 12
  • [32] Associative learning mechanism for drug-target interaction prediction
    Zhu, Zhiqin
    Yao, Zheng
    Qi, Guanqiu
    Mazur, Neal
    Yang, Pan
    Cong, Baisen
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1558 - 1577
  • [33] Predicting the Reliability of Drug-target Interaction Predictions with Maximum Coverage of Target Space
    Peon, Antonio
    Naulaerts, Stefan
    Ballester, Pedro J.
    SCIENTIFIC REPORTS, 2017, 7
  • [34] Enhancing drug discovery in schizophrenia: a deep learning approach for accurate drug-target interaction prediction - DrugSchizoNet
    J., Sherine Glory
    P., Durgadevi
    P., Ezhumalai
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2025, 28 (02) : 170 - 187
  • [35] Drug-target interaction prediction via class imbalance-aware ensemble learning
    Ezzat, Ali
    Wu, Min
    Li, Xiao-Li
    Kwoh, Chee-Keong
    BMC BIOINFORMATICS, 2016, 17
  • [36] Drug-target interaction prediction via class imbalance-aware ensemble learning
    Ali Ezzat
    Min Wu
    Xiao-Li Li
    Chee-Keong Kwoh
    BMC Bioinformatics, 17
  • [37] Comparative Studies on Resampling Techniques in Machine Learning and Deep Learning Models for Drug-Target Interaction Prediction
    Azlim Khan, Azwaar Khan
    Ahamed Hassain Malim, Nurul Hashimah
    MOLECULES, 2023, 28 (04):
  • [38] DrugAl: a multi -view deep learning model for predicting drug-target activating/inhibiting mechanisms
    Zhang, Siqin
    Yang, Kuo
    Liu, Zhenhong
    Lai, Xinxing
    Yang, Zhen
    Zeng, Jianyang Michael
    Li, Shao
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [39] Predicting the Reliability of Drug-target Interaction Predictions with Maximum Coverage of Target Space
    Antonio Peón
    Stefan Naulaerts
    Pedro J. Ballester
    Scientific Reports, 7
  • [40] Deep Neural Network Architecture for Drug-Target Interaction Prediction
    Monteiro, Nelson R. C.
    Ribeiro, Bernardete
    Arrais, Joel P.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 : 804 - 809