Predicting Drug-target Interaction via Wide and Deep Learning

被引:10
|
作者
Du, Yingyi [1 ]
Wang, Jihong [1 ]
Wang, Xiaodan [2 ]
Chen, Jiyun [1 ]
Chang, Huiyou [1 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Guangdong, Peoples R China
[2] Guangdong Pharmaceut Univ, Sch Pharmaceut Chem & Chem Engn, Zhongshan, Peoples R China
来源
PROCEEDINGS OF 2018 6TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (ICBCB 2018) | 2018年
关键词
drug-target interaction prediction; wide and deep model; machine learning; deep learning; DrugBank;
D O I
10.1145/3194480.3194491
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying the interactions of approval drugs and targets is essential in medicine field, which can facilitate the discovery and reposition of drugs. Due to the tendency towards machine learning, a growing number of computational methods have been applied to the prediction of the drug-target interactions (DTIs). In this paper, we propose a wide and deep learning framework combining a generalized linear model and a deep feed-forward neural network to address the challenge of predicting the DTIs precisely. The proposed method is a joint training of the wide and deep models, which is implemented by feeding the weighted sum of the results obtained from the wide and deep models into a logistic loss function using mini-batch stochastic gradient descent. The results of this experiment indicate that the proposed method increases the accuracy of prediction for DTIs, which is superior to other methods.
引用
收藏
页码:128 / 132
页数:5
相关论文
共 50 条
  • [1] Predicting drug-target interaction network using deep learning model
    You, Jiaying
    McLeod, Robert D.
    Hu, Pingzhao
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2019, 80 : 90 - 101
  • [2] Drug-target interaction prediction with deep learning
    YANG Shuo
    LI Shi-liang
    LI Hong-lin
    中国药理学与毒理学杂志, 2019, (10) : 855 - 855
  • [3] Deep-Learning-Based Drug-Target Interaction Prediction
    Wen, Ming
    Zhang, Zhimin
    Niu, Shaoyu
    Sha, Haozhi
    Yang, Ruihan
    Yun, Yonghuan
    Lu, Hongmei
    JOURNAL OF PROTEOME RESEARCH, 2017, 16 (04) : 1401 - 1409
  • [4] Predicting Drug-target Interactions via FM-DNN Learning
    Wang, Jihong
    Wang, Hao
    Wang, Xiaodan
    Chang, Huiyou
    CURRENT BIOINFORMATICS, 2020, 15 (01) : 68 - 76
  • [5] Predicting Drug-Target Interaction Using Deep Matrix Factorization
    Manoochehri, Hafez Eslami
    Nourani, Mehrdad
    2018 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS): ADVANCED SYSTEMS FOR ENHANCING HUMAN HEALTH, 2018, : 551 - 554
  • [6] Drug-Target Interaction Prediction: End-to-End Deep Learning Approach
    Monteiro, Nelson R. C.
    Ribeiro, Bernardete
    Arrais, Joel P.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (06) : 2364 - 2374
  • [7] Machine Learning for Drug-Target Interaction Prediction
    Chen, Ruolan
    Liu, Xiangrong
    Jin, Shuting
    Lin, Jiawei
    Liu, Juan
    MOLECULES, 2018, 23 (09):
  • [8] Drug-target interaction prediction with a deep-learning-based model
    Xie, Lingwei
    Zhang, Zhongnan
    He, Song
    Bo, Xiaochen
    Song, Xinyu
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 469 - 476
  • [9] Comparative Studies on Resampling Techniques in Machine Learning and Deep Learning Models for Drug-Target Interaction Prediction
    Azlim Khan, Azwaar Khan
    Ahamed Hassain Malim, Nurul Hashimah
    MOLECULES, 2023, 28 (04):
  • [10] A comprehensive review of the recent advances on predicting drug-target affinity based on deep learning
    Zeng, Xin
    Li, Shu-Juan
    Lv, Shuang-Qing
    Wen, Meng-Liang
    Li, Yi
    FRONTIERS IN PHARMACOLOGY, 2024, 15