Stability for planar linear discrete Hamiltonian systems with perturbations

被引:1
作者
Zhang, Qi-Ming [1 ]
Jiang, Jianchu [2 ]
Tang, Xianhua [3 ]
机构
[1] Hunan Univ Technol, Coll Sci, Zhuzhou 412007, Hunan, Peoples R China
[2] Hunan Univ, Dept Math Humanities Sci & Technol, Loudi 417000, Hunan, Peoples R China
[3] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
关键词
planar linear discrete Hamiltonian system; perturbations; stability; boundedness; LYAPUNOV INEQUALITIES; DIFFERENCE-SYSTEMS; DISCONJUGACY;
D O I
10.1080/00036811.2012.698269
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we will give several conditions under which the following planar linear discrete Hamiltonian system with perturbations {Delta x(n) = [alpha(n) + alpha(1)(n)]x(n + 1) + [beta(n) + beta(0)(n)] y(n) + f(1)(n, x(n), y(n)), Delta y(n) = -[gamma(n) + gamma(0)(n)]x(n + 1) - [alpha(n) + alpha(2)(n)] y(n) + f(2)(n, x(n), y(n)) has the same stability as the corresponding linear system Delta x(n) = alpha(n)x(n + 1) + beta(n)y(n),Delta y(n) = -gamma(n)x(n + 1) - alpha(n) y(n). Moreover, these conditions are shown to be necessary and sharp by examples.
引用
收藏
页码:1704 / 1716
页数:13
相关论文
共 15 条
[1]  
AGARWAL RP, 1999, DYNAMIC SYSTEMS APPL, V8, P307
[2]  
Ahlbrandt C.D., 1996, DISCRETE HAMILTONIAN
[3]   Discrete Breathers: Localization and transfer of energy in discrete Hamiltonian nonlinear systems [J].
Aubry, S. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) :1-30
[4]   Linear Hamiltonian difference systems: Disconjugacy and Jacobi-type conditions [J].
Bohner, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (03) :804-826
[5]   Discrete linear Hamiltonian eigenvalue problems [J].
Edu, B .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (10-12) :179-192
[6]  
Elaydi S., 2004, INTRO DIFFERENCE EQU
[7]   DISCONJUGACY FOR LINEAR HAMILTONIAN DIFFERENCE-SYSTEMS [J].
ERBE, LH ;
YAN, PX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 167 (02) :355-367
[8]   Lyapunov inequalities for discrete linear Hamiltonian systems [J].
Guseinov, GS ;
Kaymakçalan, B .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (6-9) :1399-1416
[9]  
HARTMAN P, 1978, T AM MATH SOC, V246, P1
[10]   Spectral theory of discrete linear Hamiltonian systems [J].
Shi, YM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (02) :554-570