Convergence property of gradient-type methods with non-monotone line search in the presence of perturbations

被引:7
|
作者
Li, MX [1 ]
Wang, CY
机构
[1] Weifang Univ, Dept Math, Shandong 261041, Peoples R China
[2] Qufu Normal Univ, Inst Operat Res, Shandong 276826, Peoples R China
基金
中国国家自然科学基金;
关键词
gradient-type method; hybrid projection method; non-monotone line search; perturbation; global convergence;
D O I
10.1016/j.amc.2005.05.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, two new kinds of methods which are called gradient-type method and hybrid projection method with perturbations are proposed and non-monotone line search technique is employed. At the same time, global convergence of these methods is proved only in the case where the gradient function is uniformly continuous on an open convex set containing the iteration sequence. Numerical examples are given at the end of this paper. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:854 / 868
页数:15
相关论文
共 34 条
  • [1] The global convergence of the non-quasi-Newton methods with non-monotone line search
    焦宝聪
    刘洪伟
    Journal of Harbin Institute of Technology, 2006, (06) : 758 - 762
  • [2] A Class of Gradient-type Methods with Perturbations
    Li, Meixia
    COMPUTATIONAL MATERIALS SCIENCE, PTS 1-3, 2011, 268-270 : 904 - 907
  • [3] The convergence of equilibrium algorithms with non-monotone line search technique
    Gao, ZY
    Lam, WHK
    Wong, SC
    Yang, H
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (01) : 1 - 13
  • [4] A Non-monotone Line Search Algorithm for Unconstrained Optimization
    Sheng-Long Hu
    Zheng-Hai Huang
    Nan Lu
    Journal of Scientific Computing, 2010, 42
  • [5] A Non-monotone Line Search Algorithm for Unconstrained Optimization
    Hu, Sheng-Long
    Huang, Zheng-Hai
    Lu, Nan
    JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (01) : 38 - 53
  • [6] A subgradient method with non-monotone line search
    O. P. Ferreira
    G. N. Grapiglia
    E. M. Santos
    J. C. O. Souza
    Computational Optimization and Applications, 2023, 84 : 397 - 420
  • [7] A subgradient method with non-monotone line search
    Ferreira, O. P.
    Grapiglia, G. N.
    Santos, E. M.
    Souza, J. C. O.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 84 (02) : 397 - 420
  • [8] Global Convergence of the Non-Quasi-Newton Method with Non-Monotone Line Search for Unconstrained Optimization Problem
    Liu, Hong-Wei
    OPERATIONS RESEARCH AND ITS APPLICATIONS, 2010, 12 : 270 - 279
  • [9] A New Non-monotone Line Search Algorithm for Nonlinear Programming
    Zhang, Jing
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (7B): : 265 - 268
  • [10] COMPRESSED FWI INVERSION WITH NON-MONOTONE LINE SEARCH LBFGS
    Duan, Chaoran
    Zhang, Fengjiao
    Han, Liguo
    Chang, Ao
    Yang, Xiaochun
    Huang, Fei
    JOURNAL OF SEISMIC EXPLORATION, 2017, 26 (06): : 561 - 586