Towards Adjustable Signal Generation with Photonic Reservoir Computers

被引:1
作者
Antonik, Piotr [1 ]
Hermans, Michiel [1 ]
Haelterman, Marc [2 ]
Massar, Serge [1 ]
机构
[1] Univ Libre Bruxelles, Lab Informat Quant, 50 Ave FD Roosevelt,CP 225, B-1050 Brussels, Belgium
[2] Univ Libre Bruxelles, Serv OPERA Photon, 50 Ave FD Roosevelt,CP 194-5, B-1050 Brussels, Belgium
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT I | 2016年 / 9886卷
关键词
Reservoir Computing; FPGA; Pattern generation; Numerical results; Opto-electronic systems;
D O I
10.1007/978-3-319-44778-0_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reservoir Computing is a bio-inspired computing paradigm for processing time dependent signals. We have recently reported the first opto-electronic reservoir computer trained online by an FPGA chip. This setup makes it in principle possible to feed the output signal back into the reservoir, which in turn allows to tackle complex prediction tasks in hardware. In present work, we investigate numerically the performance of an offline-trained opto-electronic reservoir computer with output feedback on four signal generation tasks. We report very good results and show the potential of such setup to be used as a high-speed analog control system.
引用
收藏
页码:374 / 381
页数:8
相关论文
共 21 条
  • [1] [Anonymous], 2006, 2006 07 FORECASTING
  • [2] Antonik P., 2016, SPIES 2016 LAS TECHN, V9732
  • [3] Online Training of an Opto-Electronic Reservoir Computer
    Antonik, Piotr
    Duport, Francois
    Smerieri, Anteo
    Hermans, Michiel
    Haelterman, Marc
    Massar, Serge
    [J]. NEURAL INFORMATION PROCESSING, PT II, 2015, 9490 : 233 - 240
  • [4] Information processing using a single dynamical node as complex system
    Appeltant, L.
    Soriano, M. C.
    Van der Sande, G.
    Danckaert, J.
    Massar, S.
    Dambre, J.
    Schrauwen, B.
    Mirasso, C. R.
    Fischer, I.
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [5] Parallel photonic information processing at gigabyte per second data rates using transient states
    Brunner, Daniel
    Soriano, Miguel C.
    Mirasso, Claudio R.
    Fischer, Ingo
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [6] All-optical reservoir computing
    Duport, Francois
    Schneider, Bendix
    Smerieri, Anteo
    Haelterman, Marc
    Massar, Serge
    [J]. OPTICS EXPRESS, 2012, 20 (20): : 22783 - 22795
  • [7] Hammer B., 2009, P EUR S ART NEUR NET, P213
  • [8] Reservoir computing with a single time-delay autonomous Boolean node
    Haynes, Nicholas D.
    Soriano, Miguel C.
    Rosin, David P.
    Fischer, Ingo
    Gauthier, Daniel J.
    [J]. PHYSICAL REVIEW E, 2015, 91 (02):
  • [9] Central pattern generators for locomotion control in animals and robots: A review
    Ijspeert, Auke Jan
    [J]. NEURAL NETWORKS, 2008, 21 (04) : 642 - 653
  • [10] Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    Jaeger, H
    Haas, H
    [J]. SCIENCE, 2004, 304 (5667) : 78 - 80