Analysis of Different Neural Networks and a New Architecture for Short-Term Load Forecasting

被引:15
|
作者
Yang, Lintao [1 ]
Yang, Honggeng [1 ]
机构
[1] Sichuan Univ, Coll Elect Engn & Informat Technol, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
short-term load forecasting; back-propagation neural network; recurrent neural network; long-short term memory; gate-recurrent neural network; SVR MODEL;
D O I
10.3390/en12081433
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Short-term load forecasting (STLF) has been widely studied because it plays a very important role in improving the economy and security of electric system operations. Many types of neural networks have been successfully used for STLF. In most of these methods, common neural networks were used, but without a systematic comparative analysis. In this paper, we first compare the most frequently used neural networks' performance on the load dataset from the State Grid Sichuan Electric Power Company (China). Then, considering the current neural networks' disadvantages, we propose a new architecture called a gate-recurrent neural network (RNN) based on an RNN for STLF. By evaluating all the methods on our dataset, the results demonstrate that the performance of different neural network methods are related to the data time scale, and our proposed method is more accurate on a much shorter time scale, particularly when the time scale is smaller than 20 min.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Short-term load forecasting using Fuzzy Neural Network
    Shao, S
    Sun, YM
    FOURTH INTERNATIONAL CONFERENCE ON ADVANCES IN POWER SYSTEM CONTROL, OPERATION & MANAGEMENT, VOLS 1 AND 2, 1997, : 131 - 134
  • [42] Short-term load forecasting based on fuzzy neural network
    DONG Liang
    MU Zhichun (Information Engineering School
    International Journal of Minerals,Metallurgy and Materials, 1997, (03) : 46 - 48
  • [43] A New Short-term Load Forecasting in Power Systems
    Li Hui
    Sun Hong-bin
    CURRENT DEVELOPMENT OF MECHANICAL ENGINEERING AND ENERGY, PTS 1 AND 2, 2014, 494-495 : 1631 - 1635
  • [44] Short-term Load forecasting by a new hybrid model
    Guo, Hehong
    Du, Guiqing
    Wu, Liping
    Hu, Zhiqiang
    PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON CLOUD COMPUTING AND INFORMATION SECURITY (CCIS 2013), 2013, 52 : 370 - 374
  • [45] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [46] Short-Term Load Forecasting Using Artificial Neural Network
    Buhari, Muhammad
    Adamu, Sanusi Sani
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, IMECS 2012, VOL I, 2012, : 83 - 88
  • [47] Use of Artificial Neural Networks for Short Term Load Forecasting
    Ioannis, Arvanitidis Athanasios
    Dimitrios, Bargiotas
    25TH PAN-HELLENIC CONFERENCE ON INFORMATICS WITH INTERNATIONAL PARTICIPATION (PCI2021), 2021, : 18 - 22
  • [48] SHORT-TERM LOAD FORECASTING BY MACHINE LEARNING
    Hsu, Chung-Chian
    Chen, Xiang-Ting
    Chen, Yu-Sheng
    Chang, Arthur
    2020 INTERNATIONAL SYMPOSIUM ON COMMUNITY-CENTRIC SYSTEMS (CCS), 2020,
  • [49] Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network
    Kong, Weicong
    Dong, Zhao Yang
    Jia, Youwei
    Hill, David J.
    Xu, Yan
    Zhang, Yuan
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (01) : 841 - 851
  • [50] A Short-Term Load Demand Forecasting based on the Method of LSTM
    Bodur, Idris
    Celik, Emre
    Ozturk, Nihat
    10TH IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA 2021), 2021, : 171 - 174